
 

 

  



 

 

Abstract: 

Music recording, like driving a car, requires the use of one‟s hands for other 

purposes, and is therefore a good application for voice commands.   I implement 

and measure the performance of basic keyword voice commands such as “Play” 

and “Stop”.  Going beyond that, I expound upon the need to name recorded 

audio tracks, and to control parameters of those tracks, referring to them by 

name.  These are commands such as “Mute the drums”, or “Solo the piano”, 

where “drums” and “piano” are the names of recorded audio tracks.   

 

Experiments with several test subjects are conducted, and it was found that the 

system would respond reliably, although much less so initially for persons with 

heavy accents.  For all users, the recognition performance improved over time. 

 

Because the recognition accuracy for named track commands was found to be 

consistently lower than for keyword commands, I devised and implemented 

techniques to improve the recognition accuracy of assigning names and of using 

names in subsequent commands.  It was found that once the correct name has 

been assigned to a track, the name can be loaded into the speech recognition 

engine as if it were a keyword.  This results in similar recognition accuracy for 

named track commands as for keyword commands.  



 

 

 

 
 

 

VOICE COMMANDS  
TO CONTROL RECORDING SESSIONS  

 

 

By 

John Martin Goddard 
B.S., B.A. University of Colorado at Boulder, 1989 

 

Thesis  

Submitted in partial fulfillment of the requirements for the degree of Master of Science 
in Computer Engineering in the Graduate School of Syracuse University 

 

September 2011 

Approved: ___________________  

            Professor James Fawcett 

Date:  ______________________   



 

 

 



 

 

 

 

 

 

 

Copyright 2011 John Martin Goddard 

All Rights Reserved 

 

 

  



 

 

 

 

 

  



 

 

v 

 

Contents  
List of Figures ................................................................................................................... viii 

List of Tables........................................................................................................................ x 

Acknowledgments .............................................................................................................. xi 

Chapter 1: Introduction ..................................................................................................... 1 

Description of the Problem Space ............................................................................ 2 

Description of the Music Recording Workflow .............................................. 3 

Recording Basic Tracks and Overdubs.............................................................. 6 

Why Experiments Are Necessary ....................................................................... 8 

Objectives: Precise Statement of Intended Research ............................................ 9 

Areas of Research Performed ............................................................................10 

Statement of Expected Contributions .............................................................13 

Relevant Research Sources ....................................................................................... 17 

Survey of Prior Work on Voice Command Systems ....................................21 

Brief Discussion of Speech Recognition Technology: .................................27 

Research Questions ................................................................................................... 29 

Chapter 2: Controlling The Recording Process By Voice ......................................... 33 

Defining the Problem ................................................................................................ 34 

Experimental Test Setup ....................................................................................36 

Windows Speech Recognition (WSR) Issues..................................................37 

User Interface Considerations: ..........................................................................39 

Factors Affecting Recognition Accuracy: ........................................................47 

Potential Problems ...............................................................................................49 

Description of Experimental Apparatus Software Design: ............................... 52 

SayPlay ...................................................................................................................52 

Audacity .................................................................................................................52 

Overview of Experimental Procedure ................................................................... 53 



 

 

vi 

 

Recording Success and Failure of Command Events in a Log File: ..........53 

Voice Command Failure Modes .......................................................................55 

Test Plan Overview .............................................................................................57 

Chapter 3: Command Recognition Accuracy .............................................................. 59 

Basic Commands: ....................................................................................................... 60 

Keyword Commands: ............................................................................................... 61 

Improvement in Command Accuracy ................................................................... 62 

Chapter 4: Naming and Referencing Tracks by Name .............................................. 68 

Flexible Grammar Constructions .....................................................................68 

Overview of Improving Name Command Recognition .................................... 70 

Improving Accuracy Assigning Names ................................................................. 72 

Elaboration: ...........................................................................................................72 

Spelling it Out .......................................................................................................74 

Improving Accuracy in Referring to Assigned Names ....................................... 75 

Adding Names into the Windows Speech Recognition Dictionary ...........75 

Loading Names as “Choices” in a grammar in the Recognition Engine ..77 

Discussion of results: ..........................................................................................79 

Discussion of results of Tricky Names and Dictionary/Grammar ............83 

Elaboration, and Loading Grammars using Homophone Pairs .................84 

Discussion of results: ..........................................................................................89 

Discussion of anomalies: ....................................................................................91 

Conclusions of Homophone Experiments: ....................................................93 

Chapter 5: Contribution Summary And Future Work ............................................... 95 

Future Work on SayPlay .....................................................................................98 

Possible Future Work: ...................................................................................... 100 

Conclusion.......................................................................................................... 106 

Appendix A: Storyboard Descriptions of Recording Session Workflow ............. 108 



 

 

vii 

 

Recording Music: .............................................................................................. 114 

Recording Voice: ............................................................................................... 115 

Appendix B: The Demonstration System .................................................................. 116 

Appendix C: Setting Up Windows Speech Recognition .......................................... 124 

Appendix D: The Windows Speech Dictionary ........................................................ 132 

Prevent a Word from Being Recognized ............................................................. 134 

Appendix E: Test Procedure ......................................................................................... 136 

Appendix F: Summary of Rules Applied to Wildcard Text Strings ...................... 150 

Appendix G: Synopsis of Experiments ...................................................................... 151 

Baseline Performance .............................................................................................. 152 

Keyword Commands .............................................................................................. 153 

Field Tests with Multiple Users ............................................................................. 154 

Add Tricky Names to Dictionary ......................................................................... 155 

Successive Improvements: ..................................................................................... 156 

Load Theremin into Grammar .............................................................................. 156 

Add Tricky Names to Dictionary, then Load them into Grammar ............... 157 

Elaboration using Homophones ........................................................................... 158 

Homophones to Show Effectiveness of Loading Names into Grammar .... 159 

Appendix H: Bibliography ............................................................................................. 160 

Appendix I: Glossary ...................................................................................................... 175 

 



 

 

viii 

 

LIST OF FIGURES 

Figure 1 Recording and editing tracks in Audacity ...................................................................... 3 
Figure 2 Recording workflow diagram ........................................................................................... 5 
Figure 3 Recording Overdubs workflow diagram ........................................................................ 7 
Figure 4 Audacity waveform display of audio tracks .................................................................35 
Figure 5 Recording equipment used in experiments .................................................................36 
Figure 6 Activity diagram for assigning “Banjo” to the recorded track .................................44 
Figure 7 Activity Diagram for loading track names into the loaded Grammar ....................46 
Figure 8 SayPlay logfile excerpt .....................................................................................................54 
Figure 9 Baseline performance test, mean WSR Confidence ..................................................60 
Figure 10 Mean Confidence value returned from WSR Engine .............................................62 
Figure 11 Cumulative successes for 5 test subjects ....................................................................63 
Figure 12 Errors by category of error ...........................................................................................65 
Figure 13 Success rates of Keywords Commands vs. Named Track Commands ...............67 
Figure 14 Grammar structure to allow tracks to be named. ....................................................68 
Figure 15 Grammar structure for issuing track commands by name .....................................69 
Figure 16 Cumulative Success Before/After Adding Name to Speech Dictionary.............76 
Figure 17 Recognition Rates after Successive Improvements .................................................79 
Figure 18 Recognition Rates Before/After Loading “Theremin” into Grammar ...............81 
Figure 19 Cumulative Successes Before and After loading into loaded grammar ...............83 
Figure 20 Recognition Accuracy when assigning names using Elaboration .........................86 
Figure 21 Recognition Accuracy after loading homophones into loaded grammar ............88 
Figure 22 Grammar structure to rename an existing keyword command .............................99 
Figure 23 Recording Overdubs................................................................................................... 109 
Figure 24  Workflow for recording Overdubs ......................................................................... 111 
Figure 25 Audacity User Interface with annotations .............................................................. 116 
Figure 26 The SayPlay program written for this research ...................................................... 117 
Figure 27 Class Diagram of the CommandFamily in SayPlay .............................................. 119 
Figure 28 Context Diagram of SayPlay and Audacity applications ...................................... 120 
Figure 29 Activity Diagram for naming a track by spelling out the name .......................... 121 
Figure 30 Activity Diagram for naming a track using “Elaboration” .................................. 122 
Figure 31 Activity Diagram for the Track Command to Play a Named Track ................. 123 
Figure 32 Speech Recognition microphone setup .................................................................. 125 
Figure 33 Speech Recognition Microphone Setup for levels ................................................ 126 
Figure 34 Speech Recognition Control Panel Advanced Options ....................................... 127 
Figure 35 Speech Recognition profiles ...................................................................................... 128 
Figure 36 Selecting the Speech Recognition Control Panel for Microphone Level ......... 129 
Figure 37 Speech Recognition Control Panel Options, initiating a training session ........ 130 
Figure 38 Speech Recognition Voice Training dialog ............................................................ 130 
Figure 39 Adding a word to the Windows Speech Dictionary. ............................................ 132 



 

 

ix 

 

Figure 40 Record a pronunciation of new word added. ........................................................ 133 
Figure 41 Prevent a Name from Being Recognized ............................................................... 134 
Figure 42 Prevent a word from being dictated. ....................................................................... 135 
Figure 43 Audacity with custom SayPlay script status display .............................................. 137 
Figure 44 Windows Speech Recognition Profiles. .................................................................. 138 

 



 

 

x 

 

LIST OF TABLES 

Table 1 Speech Recognition Research Sources (Authors) by Category .................................21 
Table 2 .Net System.Speech.Recognition highlights ..................................................................27 
Table 3 Test Plan ..............................................................................................................................58 
Table 4 Confused and Tricky Names ...........................................................................................82 
Table 5  Success/Attempt ratios for Adding Tricky Names to Dictionary and Grammar ... 82 
Table 6 Terms referring to track commands ............................................................................ 113 
Table 7 Naming Tracks and Takes ............................................................................................ 115 
Table 8  Test 1 Procedure: Baseline Measure .......................................................................... 139 
Table 9  Test 2 All Keyword Commands ................................................................................. 142 
Table 10  Test 3 Test Procedure: Field Trials .......................................................................... 142 
Table 11  Test 4 Test Procedure: Tricky Names ..................................................................... 142 
Table 12  Test 5: Effectiveness Adding Theremin to Dictionary and Grammar .............. 143 
Table 13  Test 6: Adding Tricky Names to Dictionary and Grammar ............................... 143 
Table 14  Test 7: Homophone Tests of Elaboration and Loading into Grammar. ......... 148 
Table 15:  List of Rules Applied to Names Strings When Assigning Them. ..................... 150 
Table 16: Overview of Experiments and Results .................................................................... 151 

 



 

 

xi 

 

ACKNOWLEDGMENTS 

The author wishes to express sincere appreciation to Professor Fawcett for his 

advice and guidance in the preparation of this manuscript.  

The author also wishes to thank his Thesis Advisor, Dr. James Fawcett, and Dr. 

Douglas Quin for his patience and insight acting as a test subject.  The author 

also wishes to thank the Thesis committee members, including Dr. Nancy 

McCracken and Dr. Fred Schlereth. 

 



1 

 

 

 

 

CHAPTER 1: INTRODUCTION 

Research statement, expected contributions, and relevant research of others. 

Hands-free computing by voice command has been successfully used by 

radiologists to take transcription of notes on X-Ray pictures [Ernst], to allow 

persons to remain productive working at a computer following disabilities such as 

computer related repetitive stress injuries [Hubbell].  It is also used by doctors in 

taking dictation [Caskey], control of home appliances [Chun-Liang] and drivers 

when interacting with automotive GPS navigation systems [Chang] and smart 

phones [Cohen] [Schuricht].  Hands-free computing can also be quite useful to 

streamline the process of recording music, since a musician‟s hands are frequently 

needed for musical performance.   

But, if an instrumentalist such as a pianist or guitarist wants to record themselves 

using a laptop computer, they have to reach for the touch pad or mouse to click 

on icons of tape machine controls, or press keyboard shortcuts.  If the hands-free 

computing paradigms used for other applications could be used for audio 

recording, then the musicians would not have to reach away from their 

instruments to start and stop a recording.  A producer would not need a tape 

operator to record an ensemble. 



2 

 

 

 

 

Description of the Problem Space 

Today, music recording is primarily performed using computer-based systems 

called Digital Audio Workstations (DAW).  The DAW organizes recorded audio 

into tracks, just as it would be organized when recorded onto magnetic tape, and 

mixed within a mixing console with controls per track such as a level fader, 

left/right pan control, solo and mute buttons, and other controls.  The picture 

below shows a subset of audio tracks with Mute and Solo controls indicated.  

While the specific software shown is Audacity, the horizontal audio waveforms 

are a standard way to show the composition of audio tracks making up a 

recording session. Note only 4 audio tracks are currently visible in the display.  

The fact that a scroll-bar is necessary for moving the tracks which are out of sight 

above and below into view, in order to operate the track controls, means several 

mouse moves are required just to mute or solo a track. 



3 

 

 

 

 

 

Figure 1 Recording and editing tracks in Audacity 

Description of the Music Recording Workflow 

The process of recording is basically the same as shown in Figure 2 Recording 

workflow diagram.  The end-to-end workflow for recording music is broadly 

defined as follows: 

Recording Basic Tracks: Record initial run-through of the piece, generally 

assigning one track per instrument 

Track scroll 

control 

Track solo 

control 

Track mute 

control Tracks currently in view 

Track name 

control 



4 

 

 

 

 

Recording Overdubs: Play back the “Basic Tracks”, while recording a new voice 

or instrument that is playing along with the basic tracks. 

Editing: Cut, paste, shift, replace portions of a recorded track 

Mixing: Blend and balance all recorded tracks for an optimal stereo listening 

experience. 

Final Mix down: After all recording and editing of tracks is finished, make a final 

stereo mix. 

Mastering: adjust final mix to the target media, whether it is for audio CD, DVD, 

MP3, movie soundtrack, etc. 



5 

 

 

 

 

 

Figure 2 Recording workflow diagram 



6 

 

 

 

 

Recording Basic Tracks and Overdubs 

Recording (both basic tracks and overdubs) involves the capture of a 

performance, while the other processes (editing, mixing, and mastering) are 

focused on the already-recorded audio.  Therefore the recording process would 

benefit most by being hands-free, and therefore, this is the focus of this research.  

Figure 3 Recording Overdubs workflow diagram shows recording basic tracks 

and overdubs. 



7 

 

 

 

 

 

Figure 3 Recording Overdubs workflow diagram 

Record Take: Begin recording, then perform music, voice over etc., then stop 

recording.  Delete take if not salvageable. 

Play Audio:  Audition recorded tracks to listen for performance problems. 

Solo: Selects track to hear alone, while others are temporarily turned off.  Other 

tracks can also be heard together if their solo control is also activated. 



8 

 

 

 

 

Mute: Temporarily turn off this track 

Pan: shift left or right in stereo mix 

For examples of the kind of dialog that usually takes place during a recording 

session, please see Appendix A: Storyboard Descriptions of Recording Session 

Workflow. 

Why Experiments Are Necessary 

The complexity of the music recording workflow and the demands of a real-time 

recording session mean that an exercise of discovery is required in order to learn 

where the process works and where it breaks down. 

Windows Speech Recognition was chosen over the other speech recognition 

engines because it is built into the Windows (NT, Vista and later) operating 

system, and because it would be easiest for developing custom speech application 



9 

 

 

 

 

software to work with Audacity, the music recording application.  There are also 

extensive online documentation1, a developer community2, and source code3. 

 

The unpredictable nature of Windows Speech Recognition requires 

characterization, and in order to make statistically significant claims, numerous 

experimental repetitions are necessary.  The areas where speech recognition is 

most unreliable are the following: 1. before training, 2. after training by 

individuals with heavy accents, 3. incorrect name recognition, and 4. user error 

based on improperly phrased commands. 

 

Objectives: Precise Statement of Intended Research 

The use of speech recognition for command and control of a digital audio 

workstation is a natural fit because recording music requires that one‟s hands are 

free to play the instruments being recorded.  Because recording sessions have 

traditionally been managed by a producer issuing commands by voice, both to the 

                                                 

 

 

1 http://wiki.audacityteam.org/wiki/Audacity_Wiki_Home_Page 

2 http://audacity.sourceforge.net/community/developers 

3 http://audacity.sourceforge.net/download/ 

http://wiki.audacityteam.org/wiki/Audacity_Wiki_Home_Page
http://audacity.sourceforge.net/community/developers
http://audacity.sourceforge.net/download/


10 

 

 

 

 

recording engineer and to tape operators, it is natural to model those voice 

commands in a system that automates the tape operator‟s function. The goal of 

this research is to enhance the digital audio workstation with voice commands, 

and to study the experience to make it better than using the mouse and keyboard.  

Areas of Research Performed 

A “hands-free” recording tool was developed and instrumented to write to an 

event log the details of each speech recognition event.  This allows for analysis of 

recognition accuracy and effectiveness of voice commands to control recording 

sessions. 

Speech Recognition performance is measured as a ratio of successful commands 

to the total number of commands issued, for each experiment.  Performance is 

measured for keyword commands (Play, Stop, Etc.) and for references to named 

objects, both assigning names and using the names for issuing commands. 

 

Research Areas investigated for Improving Performance:  

User defined names:  The facility for the user to name tracks or other entities, 

so that subsequent commands could refer to those things by name, has been 



11 

 

 

 

 

developed for this research.  In addition, we devised the following techniques to 

improve recognition accuracy of assigned names: 

 

Elaboration: Allow user to elaborate on a name using the phrases: “As in…” or 

“Like…”, to resolve homophones, or other misrecognized names. 

 

“As Follows”, allow the user to indicate that the following phrase is to be used 

as a name.  This name could include “Like” or “As In”, and these words will not 

be omitted from the name, as they are when using them for Elaboration, as 

described above. Allow user to say “Quote” at the beginning and “Unquote” at 

end of long phrase to be used as a name.  In the same way that “As Follows” is 

used to indicate inclusion of all of the following words into the name, “Quote” 

and “Unquote” are also used to capture the entire phrase enclosed by those key 

words. 

Spell it out: Allow user to spell out a name.  This is useful in cases where the 

name is so difficult to recognize that it seems impossible to assign any other way. 

 

We investigated the following techniques and features to improve the 

performance of referring to tracks once their name has been assigned: 

 



12 

 

 

 

 

Load the names of items into the grammar structure4, so that names are 

recognized as keywords, instead of using Dictation Speech Recognition.  The 

technique to do this automatically was developed and implemented for this 

research. 

Add names to the Windows Speech Recognition Dictionary5  

Prevent dictation of confused names in the Windows Speech Dictionary6. 

 

We utilized the Microsoft published ways to improve speech recognition 

accuracy: 

Setup the microphone.  This step is required.  It sets the signal level that is used 

during Speech Recognition7. 

 

Perform training sessions8.  Microsoft provides 2 training sessions, each of which 

may be repeated if desired or necessary.  The user reads aloud the text provided 

                                                 

 

 

4 See: Figure 7 Activity Diagram for loading track names into the loaded Grammar 

5 See: Figure 39 Adding a word to the Windows Speech Dictionary.   

6 See Prevent a Word from Being Recognized in Appendix D: The Windows Speech Dictionary 

7 See Appendix C: Setting Up Windows Speech Recognition 

8 See Appendix C: Setting Up Windows Speech Recognition 



13 

 

 

 

 

and the Windows Speech Recognition (WSR) system adjusts internal parameters 

according to the pronunciation of particular words or word fragments 

(phonemes). 

 

Note: Allow “Document Scanning” was not enabled.  This allows the system to 

scan user‟s documents for words and phrases.  It is unknown how much this 

helps recognition accuracy.    

 

It was determined that other user‟s speech profiles benefit from the addition of a 

new word into the dictionary of another‟s speech profile.  An experiment was 

run, using 2 different speech profiles, to demonstrate that a new word becomes 

recognizable from a second profile, if added to the first user profile.  

Statement of Expected Contributions 

Contribution 1: A system which responds to voice commands and supports the 

multi-track audio recording workflow was developed and measured for accuracy.  

The prototype system demonstrates the usefulness and effectiveness of the 

proposed hands-free workflow, and allows measurements to be made by logging 

status for each speech command issued.   



14 

 

 

 

 

 

Contribution 2: Changes and improvements made to Audacity, an open source 

audio recorder and editor, to support track commands issued by name.  These 

include the means of getting and setting the state of all tracks Mute or Solo 

settings.  Also added to Audacity was the means for setting a track parameter, 

such as Mute, Solo, Gain or Pan, given the name of the track to which to apply 

the change. 

 

Contribution 3: Analyzed experimental data gathered from several test subjects in 

using the system to perform basic recording tasks.  Conclusions are drawn of the 

effect of accent on the rate of performance improvement provided by the Speech 

Recognition Engine‟s machine learning capability. 

 

Contribution 4: Naming tracks and then referring to them by name is developed 

as a way to improve system flexibility and hands-free usability.  Named tracks are 

easier to refer to than numbered tracks, because the user has assigned the names 

from a meaningful connection to the content within. For example, the name of 

the instrument or the person performing, or the part within the arrangement, 

such as banjo, Paul‟s Vocal, or rhythm section, respectively, can be used.     

 



15 

 

 

 

 

Contribution 5: The technique of loading all track names as choices into a 

grammar in the Speech Recognition Engine is explored9.  This provides an 

improvement in performance of commands that refer to named tracks.  When 

names are added to the grammar in this way, performance depends on keyword 

speech recognition, where the possible names are known in advance.  These 

names are easier to recognize than having to depend on dictation speech 

recognition, which must accurately recognize any word not known in advance.   

 

Contribution 6: I developed and analyzed the Elaboration technique to improve 

name recognition when assigning new names (not known in advance) using 

dictation recognition.  Homophone pairs are used to test whether the Elaboration 

technique helps determine the correct sense of the intended homophone pair.  

This is like a person clarifying a statement such as: “Bass as in bass guitar, not 

base as in baseball”10. 

 

                                                 

 

 

9 See: Figure 7 Activity Diagram for loading track names into the loaded Grammar 

10 See Figure 30 Activity Diagram for naming a track using “Elaboration” 



16 

 

 

 

 

Contribution 7: Two features provided by Windows Speech Recognition, namely 

adding a word to the Speech Dictionary11, and preventing Recognition of 

confused words12, are measured as a way of improving recognition accuracy of 

names.  Even adding words already in the speech dictionary helps, because the 

word is spoken once when being added to the dictionary, providing the system 

with an audio example. 

 

Measurement of the effectiveness of the system requires counting the number of 

failures in a given number of attempts.  Measuring accuracy after implementing 

improvements shows the validity of improvements.  Improved performance is 

measured using the statistical approach given in [Sirota 1965]. 

 

While it is intended that existing Human Computer Interface techniques will be 

used in this application, it was hoped that some entirely new techniques might be 

explored.  The concept of “Elaboration”, as in providing extra information to aid 

                                                 

 

 

11 See Figure 39 Adding a word to the Windows Speech Dictionary. 

12 See Prevent a Word from Being Recognized 



17 

 

 

 

 

in recognition of tricky names, is explored as a possible improvement to the task 

of assigning names. 

Relevant Research Sources 

To create the voice controlled recording system, the state of the art in voice user 

interface design was surveyed for ideas and techniques that make hands-free 

speech recognition based user interfaces effective.  A list of sources and the 

useful ideas gleaned from each is found in Appendix H: Bibliography. 

This research draws ideas from the following areas: Hands-free Command and 

Control [Feng], [Lepinski], [Saruwatari], Voice User Interface [Yavelow], 

[Schmandt], [Hartman], [Ayres]; Human-Computer Interaction in 

Conversational Agent Systems [Ross], [Gruenstein], Computer Supported 

Collaborative Work [Colblath 2000], Multimodal Interfaces [Dumas], Natural 

Language Understanding[Baker] and Dialog Systems[Hindus] [Bohus, 2005,6,9].   

 

Of course the research relies heavily on foundations in Automatic Speech 

Recognition [Lee], but since the core signal processing is being done within the 

speech recognition engine, there is not a lot to differentiate them.   

 



18 

 

 

 

 

We shall see, however, that aspects of the underlying recognition engine can be 

utilized when we investigate the idea of Elaboration.  General references for 

Speech Recognition include [Baker et al. 2008-9] and [Jurafsky & Martin]. 

From this wide range of research topics, each area could provide ideas to be  used 

to enable and improve music recording workflow.  The challenge would be in 

effectively evaluating which ideas are the best ones to pursue.  Chapter 2 

examines some of these ideas and explains why some ideas are pursued in this 

research, and why others are not. 

The areas of importance for combining voice commands with traditional control 

devices include:  

Voice Navigator for music creation [Yavelow] 

“Now with the Voice Navigator, you can just sit at your mixing 
console and issue all the track muting/soloing, rewind , sync, start 
playback at ... , etc. commands with your voice, never taking your 
eyes off the mixer's meters nor your hands off the faders.” 
[Yavelow]  
 

Cannon ShutterVoice software for voice control of camera, by Scott Forman13 is 

like starting and stopping a recording remotely by voice command.  The feature 

                                                 

 

 

13 [http://www.robgalbraith.com/bins/content_page.asp?cid=7-9318-9769] 



19 

 

 

 

 

not provided by ShutterVoice is the ability to name photos taken and viewing 

them by voice commands.  This would allow photos to be tagged and the 

decision of whether or not to take more pictures based on the success or failure 

of those already taken. 

 

Text Editing by Voice [Klarlund], Programming by Voice [Hubbell], Aircraft 

Control [Reed 2004], Voice control of machinery, for hands free operation [Sepe 

1999], Integration with a spreadsheet application [Gorniak], Rough and Ready 

meeting notes and summarization [Colblath 2000] each provided insights into 

voice control in their respective domains.  

 

This demonstration system is tested for effectiveness in the support of recording 

workflow, and then is improved in the way that will be most useful and the 

performance is again measured to gauge the effectiveness of the chosen 

enhancement.  Then suggestions are made for how it might be extended into 

other areas, such as video recording, or recording lectures and presentations. 

 

Organizing Principles 

To begin, the following are some organizing principles for the concept of voice 

command controlled music recording.   



20 

 

 

 

 

First Principle: Only one person provides voice commands to the system, and 

thus, only one microphone and corresponding signal path into the system‟s voice 

recognition module.  See Figure 1 for a diagram of the signal path for voice 

commands and for music recording.  For music recording sessions we can refer 

to this person as the “producer”. For a video shoot, the person calling the shots 

is called the “director”.  A USB headphone microphone is used for capturing  

voice commands, thus providing the nearest proximity of microphone transducer 

to the producer‟s (or director‟s) voice.  This allows voice commands to be picked 

up and digitized as near to the speaker‟s vocalization as possible, for maximum 

signal to noise ratio going into the speech analyzer system. 

A second organizing principle is that audio tracks are named according to their 

content.  For example, if a track contains a piano sound, then it should be named 

“Piano” or a similar descriptive name.  If it is one of many piano tracks, then 

each can be appended with a number for easy identification. 

A third organizing principle is the concept of “Modes of Operation”.  The 

system is expected to respond to voice commands within the context of the 

workflow of recording.  There are distinct events in the process of making 

recordings, namely the start of a “take”, the “action” of the scene or 

performance, the ending of a take, and finally rendering judgment about the take 

and whether or not to repeat.   



21 

 

 

 

 

The goals of the research in this paper are to explore, by integrating existing 

technology, the ability of a computer system to keep up with the creative 

intentions of a musician, without causing the flow of the session to veer into 

technical difficulties. 

Survey of Prior Work on Voice Command Systems 

Speech recognition research and development has yielded four categories of 

speech recognition systems, given in the columns below, each containing source 

references of that category:    

Dictation Dialog Systems Command/Control Conversational 

Speech to Text Telephone Menus Robotics & Hands-free Artificial Intel. 

Sphinx [Lee] Bohus Chun-Liang Lemon, Gruenstein 

Kai Fu Lee Gruenstein 
WAMI 
City Browser,  

Feng  

Wessel Hindus Lepinski Baker, et. al. 2009 

 Lopez-Cozar Saruwatari Ross, et. al. 2004 

 McTear Schuricht  

 Ross Singh, Chauhan,   

 Schnelle Yavelow  
Table 1 Speech Recognition Research Sources (Authors) by Category 

This research sought out ideas from each of these areas, but falls primarily within 

the Command & Control category. 



22 

 

 

 

 

In the article “Voice Navigation for the Macintosh Musician” [Yavelow], a system 

for controlling music production using voice commands was described in terms 

of what could possibly be implemented with speech recognition technology at 

that time.  An investigation into subsequent uses of that particular product 

revealed a shift in focus toward hands-free Radiology annotation.  It is unknown 

exactly why, or to what extent, voice commands have been used for music 

recording over the intervening years.  AppleScript VoicePak using iListen speech 

recognition to control GarageBand was a released product, but without a 

published review since the fanfare surrounding its release.14  

 

However, the process of recording music has enjoyed great strides using 

advancements in digital technology, particularly in the ease and precision of 

manipulation and duplication.  An entire cottage industry of music producers has 

been enabled by the Digital Audio Workstation and audio editing software 

products from companies such as Avid, Digidesign, and Apple.  Thousands of 

project studios employ these systems every day.  There has been some 

                                                 

 

 

14 Software Review by Ellyn Ritterskamp: http://www.atpm.com/12.09/ilisten.shtml 

http://www.atpm.com/12.09/ilisten.shtml


23 

 

 

 

 

groundswell of demand for voice commands to control these systems by visually 

impaired persons, yet nothing has yet become commercially available specifically 

for voice control of music recording. 

 

The use of computers for managing experience, including collaboration, note 

taking, summarization, and later retrieval, is very important to information 

management applications [Hindus 2000].   As a collaboration effort, music 

recording provides an example of a process rich in interaction, structure, 

experimentation, revision, and improvisation.  If this process can be streamlined 

using voice commands, then musicians and producers will benefit, but the ideas 

learned can be transferred to other collaboration processes, such as lecture/lab, 

meetings and more generally in human/computer interaction. 

 

Other aspects of system design beyond signal processing algorithms can extend 

the effectiveness of Speech Recognition, as well. In perhaps one of the more 

historically significant papers on Voice Command Interfaces [Schmandt & 

Hulteen 1982] describes a multimodal Intelligent Voice-Interactive Interface 

system called “Put That There”, in their often cited paper entitled “The intelligent 

voice-interactive interface”.  “Put That There” accepts voice commands in 

conjunction with gestural actions such as pointing to items or locations on a 



24 

 

 

 

 

display.  The associated gestures informed the system in a more natural and 

effective way than by voice or gesture alone. 

 

[Rudnicky, 1989] in “The Design of Voice-Driven Interfaces”, describes the issue 

of Language Design: deciding the grammar, range of spoken commands and 

what to do for each, comprising the Core Language, which does not change with 

use.  Protocol Collection experiments are intended to reveal the natural spoken 

commands that users will prefer to say in accomplishing each task the system 

facilitates.   

 

While language design considerations may make a system more effective, it may 

not be considered a flexible system by users speaking naturally.  A system in 

which the user can specify the preferred voice command to be used for a given 

action is indeed a more flexible system. [Gorniak & Roy, 2003] describe such a 

system in “Augmenting User Interfaces with Adaptive Speech Commands”.  The 

system is initially controlled only by mouse and menu commands, just as all 

graphical user interface software.  But it has the additional feature that if the user 

utters a voice command along with performing an action, the system thereafter 

responds to that voice command by performing the action performed when the 



25 

 

 

 

 

command was originally given.  In this way, a user can train the system to 

respond to voice commands. 

In “Understanding without Formality: Augmenting Speech Recognition to 

Understand Informal Verbal Commands”, [McCauley], the user need not say the 

precise command exactly the same way every time.  This is allowed by resolving 

variations in command names as they are clarified.  Latent Semantic Analysis is 

performed on the continuous speech-to-text translation, to determine whenever 

the user intends a new variation of a command to be interpreted as an already 

existing command.  If a speech command is semantically equivalent to one 

already defined, but does not already appear in the command list, then the 

equivalent command is issued, and the command set is expanded to include the 

new variation of the command. 

 

In “Flexible Shortcuts” [ Nakano, 2008], the same philosophy behind keyboard 

shortcuts for menu commands is adopted in a dual approach to voice commands, 

to provide 1) commands for ambiguity resolution (when the context may 

constrain the use of certain commands), and 2) commands for exploration (when 

the user does not know the commands available in the current context).  



26 

 

 

 

 

The proposed interface attempts to resolve the “what can I say?” problem 

present in other Voice User Interfaces, by allowing the user to discover what is 

possible in the given context  

 

These techniques address the issues surrounding the use of menu commands as 

voice commands, meaning the direct translation of a menu command into a voice 

command.  In this thesis, I also wanted to go beyond the direct translation of 

menu commands into voice commands.  I do this by focusing on mouse-click 

commands instead, and to do mouse-click commands by voice, the user must 

refer to “clickable” items by name, such as “Mute the Piano Track”. 

 

Speech recognition technologies now appear to be mature enough and machine 

learning techniques numerous enough, that this endeavor seems quite possible.  

What we needed to measure, however, was just how effective voice command 

control of music recording will be initially, and how much it can be improved by 

various techniques. 

 



27 

 

 

 

 

Brief Discussion of Speech Recognition Technology: 

Microsoft released Windows Vista complete with Speech Recognition as a 

standard feature.  It allows voice commands to be used for hands-free computing 

in areas such as text processing, internet browsing, media playback and photo 

viewing.  The .NET framework version 3.5 contains a set of functions which 

support the creation of a grammar (a sequence of words) and semantics (their 

associated meaning).  The following table shows many of the key .NET functions 

and their use in this research project:  

Call Purpose 

Choices.Add() Add an element to a set of possible choices 

GrammarBuilder.Add() Add a set of choices or node in tree to grammar 

GrammarBuilder.AppendDictation() Add a slot to recognize any word 

RecognizedPhrase.SemanticValue Key to recognition result 

SpeechRecognitionEngine.loadGrammar Load a grammar to use 

SpeechRecognitionEngine.Recognize Start sending recognition events 
Table 2 .Net System.Speech.Recognition highlights 

Speech Recognition comes in several forms, each serving a specific purpose:  

Dictation Speech Recognition is for converting speech into text.  It must support 

a large vocabulary, and generally it must also support multiple speakers, although 

some training for each speaker is generally accepted.   

 



28 

 

 

 

 

There is speech recognition for dialog systems, such as telephone support to 

book travel or movie tickets, order things, etc.  This type of speech recognition 

provides prompts and expects responses that pertain to prompts.  It must 

support multiple speakers with a wide range of accents, without having any 

training from the specific user‟s speaking patterns.  The vocabulary should be 

acceptably large, given the choices the system must offer, and the dialog proceeds 

in a fairly well structured workflow. 

 

And then there are more generalized command and control systems, for example 

to control robots or other electronic devices.  The vocabulary requirements are 

not as great as with Dictation; and training for specific users is acceptable, also as 

in Dictation.  The flow of acceptable commands is predefined in grammar 

structures, and speech is confined within established contexts, as in most Dialog 

voice recognition systems. While ideas can be drawn from Dictation and Dialog 

systems, the work of this thesis falls under the Command and Control type of 

speech recognition.   

 

Since the decision to use the freely available speech recognition engine built into 

Windows 7/Vista, there is no real need to dig into the details of how it works, 

except to note that it relies upon a statistical language model and analysis of N-



29 

 

 

 

 

Grams for improving the recognition accuracy.  This means that the individual 

words initially recognized are analyzed in relation to each other, and are adjusted 

according to the likelihood that they appear together. 

The language model involves figuring out what words are likely to follow 
other words, and using that as a way to improve recognition accuracy. 
"The word 'empire' will be followed by the words 'state' or 'strike' [as in 
The Empire Strikes Back] more often than it is followed by the words 
'diverse' or 'guava,' [Yegulalp, quoting Amir Mane] 

 

The N-Gram analysis of words is utilized in the “Elaboration” technique of 

allowing a user to add information about a name being assigned to an entity, as a 

means of increasing the likelihood of correct recognition of the intended name.   

Research Questions 

Can Voice Commands be effective in controlling Music Recording? 

Can the flow of recording basic tracks and overdubs be accurately controlled 

using voice commands rather than keyboard and mouse?  What prevents the 

direct translation of voice commands into menu commands from being sufficient 

for widespread adoption?  Why have earlier efforts not succeeded?  Can 

recording software operation be effectively streamlined without stammering 

retries and frustration, resulting in an annoying reach for the mouse in order to 

make the computer respond correctly?   Can event handling be nimble enough to 

keep up with changing demands of an impatient and egotistical producer?  And, 



30 

 

 

 

 

is recognition accuracy good enough, or can it improve enough over time, so that 

the system is deemed valuable and not an unfortunate waste of time? 

Can a simple mapping of existing commands available in Audacity into 

corresponding voice commands be sufficient to allow efficient recording?  The 

answer to this question was determined to be negative.  It was necessary to go 

beyond a direct mapping of mouse and menu commands and to allow items to 

be named and to be referred to by name.  The feature of naming tracks and then 

issuing track commands on named tracks by name, was implemented and tested 

at length, and improvements were made and also tested.  The naming and 

referring by name paradigm could be extended to refer to regions of time (such 

as song sections) or to resources like special effects plug-ins (like Reverb, Pitch 

shift, etc.). 

 

Can the Chosen Application Framework be Sufficient to Obtain Results? 

The choice of Audacity for audio recording and Microsoft Speech Recognition 

for voice commands has been made based on the following decision process: 

Audacity is open source: This means that software changes can be (and were) 

made to surmount obstacles to progress, if necessary. 

Audacity supports remote scripts to enact many commands, both mouse clicks 

and menu commands.  Remote scripting allows the voice command event 

handler to be a separate program from the audio recording program, which may 



31 

 

 

 

 

speed development time.  However, there is a drawback in that the status of the 

recording system cannot always be accurately known within the voice command 

handler (in order to know the current context), and it is uncertain whether 

accurate status can be communicated back to the voice command program from 

Audacity.  Since the user can make changes directly in Audacity, the external 

program cannot always be guaranteed to be synchronized with it. 

The SayPlay program, developed as part of this research, is the voice command 

handling module.  Within the SayPlay program, voice commands are handled, 

formatted and dispatched to the audio recorder, while logging event information 

for accurate measurement of system performance.  SayPlay can get accurate 

status information from the Audacity program, but since the user can make 

changes directly in Audacity, the SayPlay program is not guaranteed to always 

have the most up to date status. 

 

Can the naming of entities and subsequent references to them by name be 

generalized into a technology that can be used elsewhere?  

Can macro commands be created by users, consisting of a sequence of 

commands?  Can an entire process or sequence of commands be given a name 

and enacted whenever that new named command is uttered?    



32 

 

 

 

 

Areas where this might be useful are: Robotics, where objects can be named to 

perform actions upon them. 

 

Answering these questions:  

 

This thesis seeks to answer these questions by creating a prototype software 

application supporting audio recording and playback by voice commands, and by 

measuring the effectiveness in actual music recording scenarios.   

 

Then, techniques are devised to improve the command performance accuracy.  

Improvements are measured in terms of the measured increase in command 

performance accuracy.   

Details of the process of naming tracks and referring to them by name are 

explored, and new techniques for more effectively naming tracks and referring to 

them by name are investigated. 



33 

 

 

 

 

CHAPTER 2: CONTROLLING THE RECORDING PROCESS BY VOICE  

Chapter 2 is a discussion of techniques and technologies that are used in this research to 

understand   the problem domain and measure effectiveness of proposed solutions. 

 

Traditionally, recording is done by a team of studio professionals directed by a 

record producer.  The role of the producer is much like that of a movie director, 

who calls out “Roll Sound, Lights, Camera, Action” to his team of technical 

personnel.  The team of studio professionals required to record music generally 

consists of a lead recording engineer who controls the mixing console,  an 

assistant, and/or a tape operator, to control start and stop the tape recorder, and 

the Producer and musicians. 

 

With the advent of digital audio production systems, the mixing and recording 

features are combined into a single hardware and software entity called a Digital 

Audio Workstation (DAW), for recording, editing and mixing multiple tracks of 

audio. 

 

Laptop computers are now fast and powerful enough to record a music track 

along with many tracks all playing at once, allowing many of the functions in a 

console and multi-track tape recorder to run on a table top. 



34 

 

 

 

 

But, using DAW software is not a hands-free process, allowing musicians to 

perform on their instruments without having to reach for a mouse to start and 

stop recording.  Having to use one‟s hands to control record starts and stops by 

mouse click is detrimental to the workflow both practically and creatively.   

 

Defining the Problem 

With a set of voice commands to control recording transport functions such as 

Play, Stop, Record, Pause, Skip Forward, and Skip Back, a musician or producer 

could overcome the problems mentioned above, and become more productive 

and satisfied.  Audacity is an open source program which provides many features 

of a Digital Audio Workstation, and is shown below in Figure 4 Audacity 

waveform display of audio tracks. 

 



35 

 

 

 

 

 

Figure 4 Audacity waveform display of audio tracks 

I developed a program called “SayPlay” to provide basic voice control over the 

functions in Audacity, and carried out performance measurements on the 

effectiveness of using SayPlay to control recording in Audacity hands-free.15   

                                                 

 

 

15 See Appendix B: The Demonstration System, for a detailed description of SayPlay and changes made to 

Audacity to support voice commands. 

Track scroll 

control 

Track solo 

control 

Track mute 

control Tracks currently in view 

Track name 



36 

 

 

 

 

Experimental Test Setup 

Test Setup:  A USB headphone is used for all experiments, so the microphone is 

close to the person speaking, rather than mounted on a mic stand, or built into 

the laptop.  It is very important to use the headset microphone for the best 

acoustical signal to noise ratio. 

The diagram below shows the components of the system: a headset microphone 

for input of voice commands, which was connected to the laptop computer by 

USB.  It could also have been wireless.  The other component next to the laptop 

computer is a USB audio interface, for connecting instruments or microphones 

to record musical instruments or voice. 

 

 

Figure 5 Recording equipment used in experiments 

  



37 

 

 

 

 

The Windows Speech Recognition facility requires that the microphone be 

initialized for the user before using speech commands.  This process is started 

whenever a new speech user profile is created. Therefore, each test subject will 

perform the microphone setup right after their user profile is created.  Also, each 

test subject will perform at least one Windows Speech Recognition training 

session.16   

Windows Speech Recognition (WSR) Issues  

Windows Speech Recognition (WSR) provides two primary modes of operation: 

Command mode, and Dictation mode.  One of the challenges of effective user 

interface is distinguishing between the two modes.  For example, if a user is in 

dictation mode, say, dictating a report, and then they wish to switch to another 

application.  This requires a context switch into command mode, to recognize the 

command to switch applications.  My research doesn‟t require delving into this 

distinction, because I use only the command mode.  However, dictation speech 

recognition is possible to use from within a predefined grammar, even for 

commands. 

                                                 

 

 

16 See Appendix C for the procedure for setting up and training Windows Speech Recognition. 



38 

 

 

 

 

Keywords and Choices within a Grammar  

WSR provides the means to define command keywords each with an associated 

semantic result, which is returned with recognition events.  Beyond this, it is 

possible to define complex grammatical structures, with numerous selection 

points, each defined by a set of choices. As an example, consider a telephone 

based pizza ordering service.   

 

Wildcards within Choices in a Grammar  

In addition to the pre-defined keyword choices and grammar structures which 

can be defined, it is also possible to define choices which are not pre-defined, and 

are included in the desired slot of the grammar as a “wildcard”.  This is where 

Dictation speech recognition comes into play.   

 

Dictation Speech Recognition within a Grammar  

Dictation speech recognition can recognize words and phrases which are outside 

of the pre-defined grammar structure, so that, for example, the grammar that 

recognizes “I‟d like to travel from Denver to Timbuktoo” can fill the destination 

slot with any name imaginable (in this case “Timbuktoo).  We will see that 

recognizing names using dictation speech recognition to fill the slot of the desired 

name, as in “Name this track digeridoo”, can work, but that adding „digeridoo‟ to 

the grammar as a choice works even better. 



39 

 

 

 

 

The Windows Speech Recognition (WSR) Speech Dictionary 

WSR provides features for adding words to the Speech Dictionary, as described 

in the section: Appendix D: The Windows Speech Dictionary.  If several 

attempts fail to assign a name, and it is a rather obscure name or pronunciation, 

then it may be necessary to spell out the name, or to add the word to the Speech 

Dictionary.  If a rather common word is continually mistaken for another word, it 

is possible to prevent the recognition of that other word, using the Prevent 

Dictation function described in:  Prevent a Word from Being Recognized.  These 

features expose an underlying set of data structures, the Speech Dictionary itself, 

and a list of words to ignore.  These are depended upon by each grammar that is 

currently loaded into the speech recognition engine.   

Grammars in Speech Recognition 

SayPlay uses a different grammar structure for each command family required.  

See for the class diagram of SayPlay command families.  For example, the 

keyword commands which translate command phrases like “Play”, “Stop”, and 

“Record” directly into commands sent to Audacity.  The TrackCommand 

grammar requires more detailed structure (see Figure 15 Grammar structure for 

issuing track commands by name), to handle many commands being applied to 

many named tracks, with some versatility in phrasing.  

 

User Interface Considerations: 

The primary focus of this research is to provide a user interface which is 

responsive and completely hands-free.  Therefore it must be accurate and flexible 



40 

 

 

 

 

enough that creative flow of the process is not hindered.  Considerations in this 

regard include  

Timely feedback: 

Timely feedback to the user regarding the state of the system: The context will 

help govern the set of possible commands, for example if we‟re recording basic 

tracks, then “name this one „Alternate‟ “ refers to the last recorded set of tracks, 

whereas if we‟re recording overdubs, then “call that take, „Alternate‟ “, refers to 

the last recorded track. 

 

Ambiguity resolution 

When the system cannot decide what to do with an utterance, there are two 

things it could be: confusion over what the user wants to do, or that the user isn‟t 

intending that anything be done because the detected utterance was not a 

command at all.  In the first case, the system may be required to ask the user for 

clarification.  In the standard usage of Microsoft Speech Recognition, a dialog 

box appears showing a numbered list of words, and a choice is made by number. 

 

“Are you talking to me?” 

Handling spurious words or comments directed away from the system: Whenever 

an utterance is not meant for the system, the system should simply not respond, 



41 

 

 

 

 

but it should simply note that the utterance is interpreted as spurious or not 

directed at it.   

Addressing the computer before any commands, using a keyword, such as 

“Computer”, or ideally a name assigned by the user.  This method of gaining the 

attention of the system was employed in the popular science fiction television 

series Star Trek, and would be familiar with most users. 

 

Microphone Mute Switch: 

The USB headphone used in the experiments features a Mute switch, to turn the 

microphone on and off.  This feature is very handy for preventing the speech 

recognition system from mistakenly reacting to speech which is not directed to 

the Speech Recognition system. 

 

Ready for Action:  

Interruptions to the recording process, such as a broken string on an instrument, 

a necessary break for the performers, and so forth, should not send the system 

into an unknown state, but would retain a system ready state for recording the 

next take, simply by muting the headphone microphone, and preventing the 

speech recognition from getting any speech directed elsewhere. 



42 

 

 

 

 

 

Audio Loudness:  

Loudness of user utterances can sometimes create a reverse correlation to system 

performance.  For example if a user is not understood on the first time or second 

attempts, they may have a tendency to speak more clearly, but also louder and 

louder each time.  Speaking loudly only causes distortion in the signal, making it 

more difficult to process and recognize.  A preprocess which detects this 

distortion along with increased signal levels, might be used to detect user 

frustration, and to provide some gentle calming feedback in order to elicit a clear 

but softly spoken (and undistorted) voice. 

 

Track Management:  

Track management is important for building a rich multi-instrumental recording 

from individual takes recorded against successive playbacks of the basic tracks. 

It was soon discovered that only having basic commands for transport (Play, 

Stop, Record) were insufficient for allowing hands free workflow.  Because the 

user needs to silence and activate individual tracks, using the Solo and Mute 

controls, there needs to be a way to refer to them.  Initial attempts found good 

results in muting and soloing tracks identified by a given track number.  Track 1 

is the top track, the first one recorded, followed by Track 2 beneath it, and so on 

for as many tracks as there are in the session.  While recognition accuracy was 



43 

 

 

 

 

reliable in allowing the user to issue track commands by voice, it was quickly 

decided to be very impractical because it required the user to remember the audio 

contents corresponding to each track number.  And, as shown in Figure 4 

Audacity waveform display of audio tracks, there is no visible track number 

indication for each track, but there is a track name.  And the track name can be 

quite descriptive of the audio contents of the track, for example: “Piano”, or 

“Lead Guitar”. 

 

Referring to tracks by name is ideal, since the name is semantically related to the 

contents of the track.  For example, a track may contain a voice recording, and 

the name can be the name of the person whose voice is contained on that track.  

Alternately, a good track name is the name of the musical instrument recorded in 

that track.  

 

Named Tracks:  

The operation of assigning names to tracks, by which they are subsequently 

referred, has become an important addition to basic commands, because the user 

can now issue commands on tracks, whether or not they are currently visible on 

screen.  And it is much easier for a user to recall a track by name than by number.  

The Activity Diagram below shows the process of assigning a name (banjo) to 



44 

 

 

 

 

the track that has just been recorded.  Note that the most recently recorded track 

is the last track (shown on the bottom) in the session, and thus, we get that track 

number when assigning the name. 

 

SayPlay AudacityWindows Speech 

Recognition

User

Send Command to 

Name Track # N

“banjo”

Send Command to get 

Number of Tracks = N

Is 

Confidence 

> 0.93?    

User says "Name the 

recorded track 'Banjo'"

Recognition Event:

Name Recorded Track

Banjo

Return 

Track 

Count

YES

Set Track N 

Name To Banjo

Apply Rules for Elaboration

And Quotation: Parse Dictation

String for “Like” or “Quote”

User visually confirms 

the Correct assignment 

of the track name 'Banjo'

 

Figure 6 Activity diagram for assigning “Banjo” to the recorded track 



45 

 

 

 

 

Once the user has assigned the desired names, and confirmed their assignments visually, 

or by successfully issuing commands upon them, he may load the names into the Track  

 

Command Grammar, as choices for the object of the commands. 

The process of loading session track names into the grammar is shown in the 

activity diagram below.  This process alleviates the need to continue to recognize 

track names using dictation speech recognition, since the names are known and 

can be loaded into a grammar as a list of choices for where to apply a command. 



46 

 

 

 

 

SayPlay AudacityWindows Speech 

Recognition

User

Unload TrackCommand 

Grammar

Is 

Confidence 

> 0.93?    

User says "Computer, 

Please Update the Session"

Recognition Event:

"Computer, Please 

Update the Session"

YES

Send Command to 

Get all track names

Ask WSR for a chance to

Interrupt the running recognizer

When finished with

Current task, make callback

Return all track names

Rebuild TrackCommand 

Grammar including 

All Track Names

Print out the new 

TrackCommand 

Grammar to status log

Reload TrackCommand 

Grammar into Speech 

Recognition Engine

When finished Loading 

Grammar, make callback

 

Figure 7 Activity Diagram for loading track names into the loaded Grammar 



47 

 

 

 

 

For activity diagrams to describe other operations, please see: Figure 29 Activity 

Diagram for naming a track by spelling out the name, Figure 30 Activity Diagram 

for naming a track using “Elaboration”, Figure 31 Activity Diagram for the Track 

Command to Play a Named Track, and Figure 32 Speech Recognition 

microphone setup. 

Factors Affecting Recognition Accuracy: 

Audio Signal Problems 

The SayPlay interface provides an indicator that displays the speech recogsnition 

input signal status (Event.AudioSignalProblem).  The following are the 

possible states the Audio Problem indicator can take: 

Too Noisy: There is too much background noise for engine to process. 

No Signal: No input signal detected. 

Too Loud:  The input signal is too loud for the speech recognition to process.  

Saturation distortion causes lower recognition accuracy. 

Too Soft:  The input signal is not loud enough for the speech recognition to 

process.   Initially, whenever SayPlay was launched, the microphone input level 

would automatically be set to a setting of 2 (on a scale of 1 to 100).  It is strongly 

suspected that the initial setup of the microphone was too loud, and the low 



48 

 

 

 

 

setting was set to compensate.  However, it was discovered that as a result, basic 

speech commands such as Start and Stop, were recognized with rather poor 

performance.  Correcting the microphone setup resulted in a higher automatic 

microphone input level setting, and in better speech recognition performance.17   

Too Fast: The input signal is too fast for the speech recognition to process.   

Too Slow: The input signal is too slow for the speech recognition to process.   

 

Microphone placement: 

Mic should be no more than an inch or two from the mouth of the speaker.  

Having it too far away, such as the lap-top computer‟s built-in microphone will 

result in a greater influence of room noise.  If it is too close, it may result in too 

much sound from disfluencies and non-verbal gestures, such as clearing the 

throat, licking the lips, or the “breath after” problem. 

 

Phrasing and the “Breath after” problem: 

Sometimes articles such as “The”, “a”, “and”, erroneously appear before or after 

the intended name of the track.  Usual examples occur when taking a breath 

                                                 

 

 

17 Figure 9 Baseline performance test, mean WSR Confidence 



49 

 

 

 

 

following a phrase, such as in “Name this track guitar -huff” (take a breath), being 

recognized as “Name this track guitar and”. 

Accent is an important factor in the initial success rate using Speech Recognition 

for command and control.  Even after completing two training sessions, the test 

subject with the strongest accent had very poor rates of success.  It was only after 

repeated attempts to use voice commands did they even begin to succeed, and 

the meager initial success improved more slowly than for native American 

English speaking test subjects18. The impact of accent was also discussed in 

[Schuricht]. 

Potential Problems 

Problems are in order of severity, with the worst possible problems listed first. 

Destroying data: If a misrecognized command results in destroying data, such as 

a completed take, or worse, an entire session, then the software will be deemed a 

problem. 

                                                 

 

 

18 Figure 11 Cumulative successes for 5 test subjects 



50 

 

 

 

 

 

Missing a take: If the software results in the failure to record a performance, then 

this is also a problem.  For example, singing a rendition of the classic Motown 

hit: “Stop, in the name of love”, the “Stop” would cause recording to halt, failing 

to record the take. 

 

User frustration: If the user must repeat a command more than is comfortable, 

then alternate means of surmounting the obstacle which speech recognition has 

become are sought.  The author believes that it helps to be able to rephrase the 

command when repeating it, as humans do when a statement is not heard well 

enough to be understood. 

 

Ambient noise, music or other sound: This can adversely affect the ability of the 

Speech Recognition system to function correctly.  This issue is minimized in the 

experimental setup by using microphone positioned close to the speaker‟s lips.  

Experiments were not carried out on the interaction of ambient noise, music 

listening levels or the like.  This problem is considered to be tangential to the 

more important issue of supporting the recording workflow by naming tracks. 

 



51 

 

 

 

 

Reaction time (human and machine): If reaction time is too slow, then assertions 

from the user will not be matched with reactions by the system, and the user may 

repeat a command while the system responds to the first, and both, or gets into 

an undesirable state.  This can be critical when the user attempts to identify a 

specific moment in time.  For example, during playback the user may wish to 

mark the beginning or end of a selection, by first pausing playback at the specific 

point in time.  The delay in recognizing and issuing the pause command could 

cause inaccuracy in the setting of the desired point.  The user might compensate 

for this delay (having gotten used to how long the delay is), but if the system 

improves its response time, or lags due to sporadic overload, then the 

compensation itself may require compensation. 

Homophones: (words that sound the same, but are spelled differently): 

Distinguishing between two words that sound exactly the same can only be done 

based on the context in which those words are spoken.  If the word is used as a 

name, then the context will be necessary to determine which spelling is correct. 

 

Homographs: (words that sound different but are written the same way): 

Homographs can only be represented in one way as text, but have different 

sounds, for example “Record” “Tear” and “Read” are homographs.  “Record” 

can be a verb (re-CORD), or a noun (REC-ord).  Despite the idea that 



52 

 

 

 

 

homographs can pose a problem to Speech Recognition grammars, which are 

defined by text words, the homographic command “record” (used to begin 

recording) was found to be quite reliable, after training. 

 

Description of Experimental Apparatus Software Design: 

SayPlay 

The voice control part of this system was designed and implemented in the 

“SayPlay” program.  SayPlay can log every speech recognition event (including 

comments as well as commands), to a file that is created when SayPlay is 

launched.  Speech recognition events are then analyzed statistically to show 

performance trends and specific failure modes, in order to find out when and 

why certain failures commonly occur.  For more on SayPlay, see: Appendix B: 

The Demonstration System 

Audacity 

Audacity is a multi-track audio recorder and editor program with a scripting 

interface so that other programs can issue control commands (to Audacity), for 



53 

 

 

 

 

recording and playback of audio, as well as other actions.  Audio recordings are 

organized in horizontally linear waveform displays, called Tracks, which have 

standard mixing controls, Solo, Mute, Pan and Gain. 

Please see Appendix B: The Demonstration System, for the description of how 

Audacity fits into the software design of SayPlay. 

 

Overview of Experimental Procedure 

Experiments have been designed to exercise voice command functions and to 

note whether or not the system responds correctly.  Accuracy is measured by 

statistical analysis of success rates and the attributed causes for failures. 

Recording Success and Failure of Command Events in a Log File: 

A single test event consists of the test subject speaking a command phrase, and 

then determining whether or not the command was correctly carried out.  

Success or failure are verbally indicated by speaking the word “Pass” or “Correct” 

for success and “Fail” or “Wrong” for failure.  These Pass/Fail indications are 

written into a log file with each associated command  The success-indicating 

word “Pass” was frequently mistaken for the command “Pause” by a user having 

a strong accent, prior to sufficient training. 



54 

 

 

 

 

The experimenter may also append a comment about an event.  The comment 

must be stated immediately following the Pass/Fail indication, because there is 

only a limited time for the comment to accepted, after which spoken words go 

back to being considered commands.  Comments can also be added to the log 

file without association to particular events, simply by prefacing it with the 

keyword “Comment”.  This is useful when indicating the purposes of an 

experiment, descriptions of external events that could not otherwise be detected, 

such as changing a system setting, or taking a break for lunch. 

Voice commands appear in the left column, with the middle column showing a 

numeric confidence value (a decimal number between 0 and 1 that is returned by 

the Windows Speech Recognition engine with each recognition result). 

 

UnMute can a track             0.9530823  Wrong name 

UnMute the track named piano   0.9220377  Correct 

Mute the guitar track          0.9215692  Correct 

UnMute the guitar track        0.9482349  Correct 

Mute the drums track           0.8997931  Wrong nothing happened 

UnMute the drums track         0.9508225  Correct 

Solo the piano track           0.9323536  Correct 

Figure 8 SayPlay logfile excerpt 

The TAB delimited columns in the log file are from left to right:  Spoken 

command, Confidence value returned by the speech recognition engine, 

Pass/Fail determination followed by an optional comment.   

 



55 

 

 

 

 

The log file is created on startup of the SayPlay application, and is saved during 

normal operation whenever events are added to the file. 

Voice Command Failure Modes 

When commands fail to execute, the failure is attributed to one of the following: 

 

Low Speech Recognition Confidence: The command is correctly recognized, 

as shown in the Log File, but the confidence value returned by Windows Speech 

Recognition (WSR) is below threshold, so no command is sent to Audacity.  

 

Wrong Name: The track name is misrecognized, but the command is sent to 

Audacity because the WSR Confidence value is above threshold.  Since the name 

is incorrect, it is not acted upon by Audacity because no track of that name exists. 

 

Wrong phrasing: User error, or an otherwise incorrect wording of a command.  

This can be as simple as mumbling, stammering, or could be a failure to 

remember the correct phrasing of a command.  It could also be the failure to 

remember that the command is not supported in the current context.  

 



56 

 

 

 

 

Timeout violation: A long pause in phrasing causes the recognition engine to 

act on the first part of the utterance, as if there were no more words to come. 

 

False positive: An utterance which is not a command is misinterpreted as a 

command, with a WSR Confidence value above threshold, resulting in an 

unintended command being mistakenly issued to Audacity. 

 

True rejection: An utterance which is not a command is misrecognized as one, 

but the confidence value returned by Windows Speech Recognition is below 

threshold, and so it is correctly rejected 

 

“Breath After”: When Windows Speech Recognition is using dictation speech 

recognition, it is possible to misrecognize a dysfluency following a recognized 

word, as a mistaken additional word.   This occurs where optional additional 

wildcard words are possible, such as within the name for naming an audio track.  

A dysfluency can be a quick breath inhaled, or the sound made by lickings one‟s 

lips or clearing one‟s throat.  For example, the track naming command can turn 

out wrongly recognized as having “and” at the end, as in: “Name this track bass 

guitar <and>”. 



57 

 

 

 

 

Another example occurs when adding a comment following a failure indication.  

“Wrong I" appears where a comment can be added to “Wrong”, but instead of 

stating an optional comment, the user‟s inhale is misrecognized as a word. A 

simple solution to the “Breath After” problem has been to prevent certain 

commonly mistaken words from ever appearing at the end of a name: “I”, “and”, 

“ah”, for example.   However, as with any application of simple rules, there are 

exceptions, and those will also be prevented from occurring. 

Test Plan Overview 

Testing was interleaved with exploration, in order to prune the number of opportunities 

for research down to a manageable set.  See Appendix E: Test Procedure.  Test results 

and discussions follow, and can be accessed directly from the active links in the following 

table.  



58 

 

 

 

 

Test Plan 

Test  
Context 

Basic 
transport 
commands 
Play/Stop/etc.  

Keyword 
Commands  
(the long list) 

Track commands  
(Solo/Mute of 
named tracks – 
many users) 

Tricky Names  
recognition 
accuracy 

Preventing 
Dictation and 
Loading Names 
into Grammar 

Elaboration and 
Loading 
Grammar 

Test De-
scrip- 
tion 

Basic 
transport 
commands 
Play/Stop/ 
Pause/Record  
 

Test each 
Audacity 
scripting 
interface 
command 

5 test subjects on 
Keyword and  
Named Track 
Commands 

Before and After 
tests of 
Theremin,  
Wow, Crotales 
and Gambales 

Prevent 
dictation of 
confused 
names, then 
load names into 
grammar 

Use Homo-
phones as 
Names 
 
 

Test 
Pro- 
cedure 

Table 8  Test 1 
Procedure 

Table 9  Test 
2 All 
Keyword 
Commands 

Table 10  Test 3 
Test Procedure: 
Field Trials 

Table 11  Test 4 
Test Procedure: 
Tricky Names 

Table 12  Test 
5: Effectiveness 
Adding 
Theremin to 
Dictionary and 
Grammar 

Table 14  Test 7: 
Homophone 
Tests of 
Elaboration and 
Loading into 
Grammar 

Test 
Result 

 
Figure 9 

Baseline 

performance 

test, mean 

WSR 

Confidence 

 

  

Figure 10 
Mean 
Confidence 
value 
returned 
from WSR 
Engine 

Figure 11 
Cumulative 
successes for 5 test 
subjects 
 
Figure 12 Errors by 
category of error 
 
Figure 13 Success 
rates of Keywords 
Commands vs. 
Named Track 
Commands 

Figure 16 
Cumulative 
Success 
Before/After 
Adding Name to 
Speech 
Dictionary   
 
 

Figure 17 
Recognition 
Rates after 
Successive 
Improvements 

Figure 21 
Recognition 
Accuracy after 
loading 
homophones 
into loaded 
grammar 
 
 

Inter- 
preta-
tion 

Basic 
Commands: 

Keyword 
Commands 

Improvement in 
Command 
Accuracy 

Improving 
Accuracy in 
Referring to 
Assigned Name 

Adding Names 
into the 
Windows 
Speech 
Recognition  

Elaboration and 
spelling which of 
the Homophone 
pair to use as 
name 

Table 3 Test Plan 



59 

 

 

 

 

CHAPTER 3: COMMAND RECOGNITION ACCURACY  

Initial tests focused on basic commands (Play, stop, record, etc.) in order to 

establish a baseline of performance, and then continued to test all keyword 

speech commands available in the Audacity scripting interface.  A field trial with 

multiple test subjects, using commands operating on named entities, was then 

performed.  Problem areas were identified and improvements were implemented 

to address them.  Further testing was performed to support the claims that the 

techniques implemented resulted in actual improvements. 

 

Effectiveness of using voice commands to control music recording is largely 

determined by the accuracy of the speech recognition technology in use.  And the 

factors affecting accuracy of speech recognition are many, including microphone 

placement, ambient noise, speaker accent, user error (not stating the command 

correctly), and the pace and spacing of words being spoken. 

 

Each of these contributing factors could be analyzed in-depth in isolation.  I have 

chosen to investigate the performance differences between keyword command 

recognition, and named track commands which rely on large vocabulary dictation 

speech recognition in order to recognize the name correctly. 



60 

 

 

 

 

Basic Commands: 

After discovering that the microphone setup process had set the level to an 

unacceptably low value, the baseline experiment was repeated. 

 

Figure 9 Baseline performance test, mean WSR Confidence 

 

 The above shows how microphone level can adversely affect recognition 

confidence (that value returned with each event by the Speech Recognition 

Engine).  The average confidence for “Stop” was much lower while the 

microphone input level was erroneously set to a value of 2 (on a scale of 1 to 

100). The test data was subsequent to setting up the microphone. 

0.85

0.9

0.95

1

play record save stop

Confidence before and after mic setup

Before Correction

After Correction



61 

 

 

 

 

Keyword Commands: 

Keyword commands are those for which Audacity provides a scripting interface, 

and are handled by SayPlay and sent on to Audacity whenever the Confidence 

value for the recognition event is above a threshold of 0.93.  The confidence 

values for each command are averaged and tabulated in figure below.  The test 

data comes from Table 9  Test 2 All Keyword Commands, in Appendix E: Test 

Procedure. Mean Confidence Value is returned from the Speech Recognition 

Engine for each command listed is above the threshold. 

It was found that for all commands, the average confidence value returned by the 

Windows Speech Recognition (WSR) engine was above the threshold for 

deciding whether or not to act on the command.  This indicates that speech 

recognition can be used with a reasonably high degree of accuracy when single 

command words and phrases are uttered during the process of recording.  It does 

not however indicate the expected success for commands which pertain to 

particular tracks of the session, indicated by their names.  This type of command, 

the “named track” command, is discussed later. 

 



62 

 

 

 

 

  

Figure 10 Mean Confidence value returned from WSR Engine 

Improvement in Command Accuracy 

The figure below shows the results from Table 10  Test 3 Test Procedure: Field 

Trials.  Cumulative successes are shown for voice commands issued in a 

simulated recording session.  These are compared against the ideal “perfect” line 

0.956

0.957

0.959

0.959

0.960

0.960

0.960

0.964

0.964

0.967

0.967

0.968

0.971

0.972

0.973

0.974

0.974

0.975

0.978

0.978

0.980

0.981

0.982

0.993

0.999

0.999

0.999

stop

previous track

undo

set right selection

skip start

track pan left

select extreme left

select set extreme …

zero crossing

select center right

track gain decrement

set left selection

unsolo all tracks

select extreme right

play

disjoin labels

track menu

cursor long jump …

cursor short jump …

cursor short jump left

cursor long jump left

cursor track start

redo

track pan right

Play region

record

Unselect all

0.938

0.945

0.946

0.947

0.947

0.947

0.948

0.948

0.949

0.949

0.949

0.950

0.950

0.951

0.951

0.951

0.952

0.952

0.952

0.953

0.953

0.954

0.954

0.954

trim

select all

cut

split cut

Select start cursor

cursor select start

split delete

select center left

skip end

duplicate

track gain increment

select set extreme …

pause

delete

silence

copy

split new

next track

silence labels

disjoin

paste

split labels

cursor select end

save



63 

 

 

 

 

if all commands were successfully executed.  The differences in the rate of 

improvement for each test subject correlates most closely with speaker accent. 

 

Figure 11 Cumulative successes for 5 test subjects 

Point 63 is trouble with "Vocal Scat" : “Vocals get”, “focal scat”, “Vocal scout”. 

Point 25 is trouble with "Alto Sax" mistakes: “alta sachs”, “up to sax”, “otto 

sax/sachs”, or “office acts”. The naming command tends to favor proper nouns 

7

26

15

22 25

47

55

63

0

20

40

60

80

100

120

140

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

Perfect

A

B

C

D

E



64 

 

 

 

 

as results.  This is why “Alta Sachs”, or “Otto Sachs” appears.  We could try 

altering the track naming command to “Assign this track name”… 

15 and 47 are trouble with "Violins" mistaken for "Violence"  

22 and 55 are trouble with "Vocal Scat" : see SayPlayLogFile_367051199.txt 

7 and 26 were successful commands alternating with false positives of utterances 

of "Pass" that sound like "Pause"  

26 is start of second session, and continued trouble with alternating false 

positives. 

The precise source of performance improvements cannot be attributed solely to 

the Speech Recognition Engine, because the speaker will unconsciously change 

the way words are pronounced, particularly once success has been achieved.  The 

testing was not done by professional voice talent, intentionally speaking the same 

way every time.  If a user found success, then it‟s likely they will attempt to 

emulate the same tone, level and pronunciation when subsequently trying for 

successful command recognition.  But, there needs to be a few successes for the 

user to get a feel for what works. 

It is not known to what extent the demonstrated improvement in performance is 

due to the Voice Recognition system learning from examples, or how much is 

because the user has improved their articulation and pronunciation. 



65 

 

 

 

 

For the above experiments, it is helpful to attribute the causes of failures to one 

of the many failure modes described before.  This yields the following chart of 

errors by category: 

 

Figure 12 Errors by category of error 

From the analysis of the annotated log files, the majority of errors are of “low 

confidence”, followed by the “wrong name” category.  For a complete list of 

error categories, see: Voice Command Failure Modes. 

 

2
7

......

0

2

4

6

8

10

12

14

N
u

m
b

e
r 

o
f 

 E
rr

o
rs

Subject A

Subject B

Subject C



66 

 

 

 

 

To improve the low confidence performance, it is possible to simply lower the 

confidence value threshold to accept commands with lower confidence.  This 

could result in more false positives, however.  Or, if the user can bear repeating 

himself at the beginning, the confidence value does increase over time with use. 

It is helpful to further examine the errors of low confidence, because within this 

category, there can be false positives, wrong names, and true rejections. 

After several rounds of testing numerous test subjects, the event data was 

annotated and grouped according to whether the event was a Keyword 

Command (which are entirely specified by the Speech Recognition grammar) or a 

Named Track Command (which require correct Dictation Speech Recognition of 

the name).  The results shown below indicate that recognition rates for Named 

Track Commands are consistently lower than for Keyword Commands. 



67 

 

 

 

 

Figure 13 Success rates of Keywords Commands vs. Named Track Commands 

With the performance of basic commands being higher than for named track 

commands, effort was directed toward improving the “wrong name” type of 

error.  In Chapter 4 we turn our attention to improving the accuracy of Named 

Track commands. 

70%

65%

63%

76%

86%

86%

0% 20% 40% 60% 80% 100%

Subject A

Subject B

Subject C

Keyword Command

Named Track Cmd



68 

 

 

 

 

CHAPTER 4: NAMING AND REFERENCING TRACKS BY NAME 

One the most likely causes of failure is getting the wrong name, as demonstrated 

in Chapter 3.  In addition, the recognition rate was lower for named commands 

than for keyword commands.  In Chapter 4 we examine more ways to improve 

the performance of naming tracks, and commands that refer to names. 

Flexible Grammar Constructions 

The diagrams below show the grammar structures to allow track naming (Figure 

14 Grammar structure to allow tracks to be named.), and subsequent track 

commands to refer to tracks by those names (Figure 15 Grammar structure for 

issuing track commands by name).   

 

 

 

Figure 14 Grammar structure to allow tracks to be named. 

Name

Wildcard 

(Dictation)

User Defined 

Track Names

The 

Recorded

This Take

Track



69 

 

 

 

 

Thus the recognized phrase can be simply: “Solo the guitar”, instead of “Solo the 

guitar track”, or even simply “Solo guitar”.  Or it could be stated as elaborately as: 

“Solo the track named guitar”.  These variations provide the user with some 

flexibility in how commands are phrased.  Later, test results are given where the 

chosen phrase may affect accuracy.  The user may rephrase a command if it is not 

carried out on the first attempt. 

For example, if “Mute the Violins” fails, the user can restate the command “Mute 

the track named Violins”, for better results. 

Note that items shown in curly braces ({...}) are optional.   

Take

Track
{ Named }

Wildcard 

(Dictation)

User Defined 

Track Names

Session Track 

Names

Take

Track
{ The }

(Un) Mute

(Un) Solo

Play

Pan

(Un) Focus

(Un) Select

{

}

{

}

 

Figure 15 Grammar structure for issuing track commands by name 

Flexibility comes from allowing words to be optionally present within a 

recognized phrase.  As shown above the optional article “the” and the optional 

noun “track” allow a user to say any of the following: “Play the guitar track”, 



70 

 

 

 

 

“Play the guitar”, “Play guitar track” or simply “Play guitar”.  This flexibility is 

nice because different users have been found to favor different phrases, and if 

restating the command is necessary due to a recognition failure, it is human 

nature to want to rephrase the command differently for a better chance to be 

understood.   

This flexibility, however, is hard-wired and allows variation only as far as has been 

programmed.  A user cannot say the following and expect it to work: “Okay, now 

let‟s hear the guitar track without the others”, which is merely a paraphrase of the 

command “Play the guitar track”. 

 

Overview of Improving Name Command Recognition 

Earlier measurements showed that Name Commands had lower recognition 

accuracy than keyword recognition.  The following techniques are used to 

increase the accuracy in naming tracks and referring to them by name. First, the 

name must be assigned correctly.  To correctly assign a new name, there is:  

1. Elaboration 

2. Quoting the name as a phrase 

3. Spelling out the name 

Each of these methods for assigning names is described in detail in the sections 

that follow. 



71 

 

 

 

 

Once the name has been correctly assigned, there are ways to improve the 

recognition accuracy of named entities in commands which refer to them.   

The techniques for improving name recognition, once assigned, are: 

1. Load the assigned names into the corresponding grammar.  These names 

would occupy the “Session Track Names”, when referring to the lower 

right box in the diagram: Figure 15 Grammar structure for issuing track 

commands by name.  Also see Figure 7 Activity Diagram for loading 

track names into the loaded Grammar, for the steps for carrying out this 

action in detail. 

 

2. Adding words to the Windows Speech Dictionary.  See Figure 39 Adding 

a word to the Windows Speech Dictionary. See Figure 40 Record a 

pronunciation of new word added. For saving a spoken example of the 

new word being added. 

 

3. Preventing confused words from being recognized.  See Figure 41 Prevent 

a Name from Being Recognized and Figure 42 Prevent a word from being 

dictated. 

 
Each of these methods for referring to names is described in detail in the sections 

that follow.   See section 2.2 Windows Speech Recognition (WSR) Issues for a 

review of the introduction to these features. 

 



72 

 

 

 

 

Adding names to the Speech Dictionary and preventing Confused Words from 

being recognized are accomplished using the Windows Speech Recognition 

control panel.  Including the assigned names as choices in a grammar loaded in 

the speech recognition engine is done programmatically at the user‟s request. 

 

Improving Accuracy Assigning Names 

Elaboration: 

Elaboration of names is made by including a simple construction of “Like” or 

“As In” with the naming command, along with associated words that improve 

the chances for correct recognition.  For example, if the user tries to name a track 

“Bass”, as in the musical instrument, but instead the system recognizes the 

homophone “base”, as in baseball, then the user can simply state: “Name this 

track bass like the bass guitar”, or “Name the recorded track bass as in the 

musical instrument”.  The extra words utilize the statistical language model to tip 

the balance in favor of the correct sense and meaning of the word “Bass”. 



73 

 

 

 

 

Elaboration is implemented by the positive detection of the substrings “Like” or 

“As In”, within the name string, and then truncating the string to retain only what 

comes before “Like” or “As In”.19 

An implementation detail was that the key phrase “As In” became problematic in 

actual practice, as it was frequently misrecognized as one of the following: “As 

An”, “Is An”, or “Is In”.  Therefore, these key phrases were also included in the 

rule to detect elaboration, and so they are also removed from a name when 

recognized as elaboration. 

The drawback of this technique is that it always blindly removes any part of the 

string following and including the key phrases listed above: “like”, “as in”, “as 

an”, “is in”, “is an”.  So, if the user wishes to have these strings be part of the 

name, for example: “Scream like a banshee”, then unfortunately the track name 

will be truncated to “Scream”. 

This problem is solved by allowing the user to say “Quote” and “Unquote”, or 

“As Follows” to indicate the boundaries of the desired phrase.   For example: 

                                                 

 

 

19 Dictation speech recognition allows arbitrary names to be recognized.  If the recognized name contains the 

substrings “Like” or “As In”, then these substrings and everything after are simply removed, leaving only 

the desired name string.  The reason they are included is to give more words to the N-Gram analysis 

function of the Speech Recognition Engine.  The extra descriptive words can tip the balance in favor of 

the desired meaning of the intended word. 



74 

 

 

 

 

“Name this track as follows: Scream like a banshee” overrides the presence of 

“Like” and includes the entire phrase so indicated as the desired name. 

Spelling it Out 

SayPlay allows the user to spell out a name when it isn‟t recognized any other 

way.  Spelling out a name is done using the following command phrase:  “Name 

this track spelled W., O., W. (or should I say “double-ewe, oh, double-ewe”). The keyword 

“spelled” places the recognition engine into an alphanumeric spelling mode that 

accepts numbers and letters.   Then the resulting recognized string, in this 

example: W., O., W.,, is parsed to remove each period, convert to lower case, and 

concatenate all the letters into the word used for the name: “wow”.  Spelling out a 

multiple-word phrase is not possible, since the “space” character is not 

recognized in the spelling mode of the Windows Speech Recognition.  Hence, all 

recognized letters are concatenated into a single word.   For a detailed step-by-

step diagram of the functions, see: Figure 29 Activity Diagram for naming a track 

by spelling out the name. 

 

Spelling out the name is good as a last resort to assigning a name, but becomes 

cumbersome if it is required for each subsequent command that refers to that 



75 

 

 

 

 

name.  In the next section, we improve the accuracy of recognizing commands 

that refer to names once they have already been assigned. 

 

Improving Accuracy in Referring to Assigned Names 

Assigning a name correctly is the first piece of the puzzle.  Having that name 

correctly recognized when referring to the named entity is the second puzzle 

piece.  Just because the name has (finally) been assigned correctly, does not mean 

that it will always be recognized correctly in subsequent commands.  Aside from 

the training-based performance improvement that results from normal use, there 

are other more direct ways of improving recognition of names: Adding each new 

name to the Speech Dictionary, preventing recognition of confused names, and 

loading the names into the grammar in the Speech Recognition engine. 

Adding Names into the Windows Speech Recognition Dictionary 

If a name is so difficult to recognize that the user must spell it out, or if the word 

is foreign, esoteric or is simply a made-up word, then it is possible to manipulate 

the “Speech Dictionary” directly, using techniques described in Appendix D: The 

Windows Speech Dictionary. 



76 

 

 

 

 

 

Figure 16 Cumulative Success Before/After Adding Name to Speech Dictionary 

The test for the above is given in Table 11  Test 4 Test Procedure: Tricky Names.  

The cumulative success of each track command is shown, before and after track 

names are added to the Speech Dictionary.  Each name was assigned to a 

respective track, and then commands were issued by name on those tracks.  

Then, after several attempts, the names were added to the Speech Dictionary, 

after which the cumulative successes improved, as follows:  The name Wow was 

successful each time after it was added to the Speech Dictionary, Crotales failed 

once, but was successful in the remaining attempts.  Gambales was still 

misrecognized occasionally, and this was very dependent upon pronunciation 

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Perfect

Wow

While

Gambales

Crotales

Zero Values at start are before 
adding word to Speech Dictionary



77 

 

 

 

 

Once track names are assigned, the user must be able to refer to those tracks by 

name.  The same techniques used to initially acquire the name can also be used 

when referring to the name.  These techniques were to elaborate using “Like” or 

“As In”, and also to spell out the name.  However, this is somewhat unnatural, 

since one would expect the system to get better at recognizing the name after 

having gotten it successfully the first time.  To address this, a technique is 

employed whereby all of the names of tracks are loaded into the Speech 

Recognition Engine grammar as possible target choices.   

Loading Names as “Choices” in a grammar in the Recognition Engine 

Intuitively, having a ready list of possible names should give the speech 

recognition engine the advantage of better recognition rates, but for some reason, 

certain names were difficult to recognize, even when they were included within 

the list of names loaded into the grammar.     

 

The problem of having to continue to spell out a name even after having assigned 

it by spelling is solved by loading the name into the track command grammar, as 

one of the choices for the target of the command.  See Figure 15 Grammar 

structure for issuing track commands by name: the Session Track Names at the 



78 

 

 

 

 

lower right of the diagram are those which are loaded into the grammar.  Session 

Track Names are among the set of choices for the target of a track command.  

These are loaded into the grammar structure whenever the user issues the 

command to do so.  Currently, that command is “Computer, please refresh the 

session”, but it could easily be “Computer, please update the session track 

names”, or some other intuitive command phrase.  For a detailed diagram, see: 

Figure 7 Activity Diagram for loading track names into the loaded Grammar 

 

When names are loaded into a grammar, each becomes one in a set of choices.   

As a result, recognition accuracy increases and it is no longer necessary to spell 

out the names.  This is because the Windows Speech Recognition engine no 

longer has to rely on Dictation Speech Recognition to recognize the name.  

These claims are validated by the experimental results shown in Figure 17 

Recognition Rates after Successive Improvements, and in Figure 21 Recognition 

Accuracy after loading homophones into loaded grammar.  The grammar being 

referred to is the Track Command grammar, shown in Figure 15 Grammar 

structure for issuing track commands by name.  The test procedure for the results 

below can be found using this link: Table 12  Test 5: Effectiveness Adding 

Theremin to Dictionary and Grammar.   

 



79 

 

 

 

 

 

Figure 17 Recognition Rates after Successive Improvements 

Discussion of results: 

If “Theremin” was not initially in the dictionary, then how was it ever recognized 

correctly 4 times in the first 27 attempts (14.8%)?  It must already have been in 

the Speech Dictionary, and the act of recording a pronunciation when adding it 

to the dictionary allowed the measured performance increase. 

Once “Sarandon”, the primary source of confusion, was prevented from being 

recognized, accuracy improved to 15 of 58 attempts (25.8%).  A leap in 

performance to 81.2% (134/165 = 81.2%) occurred after “Theremin” was added 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial success 
rate

Prevent 
"Sarandon"

Add 
"Theremin" to 

Speech 
Dictionary

Add 
"Theremin" to 

loaded 
grammar



80 

 

 

 

 

to the Windows Speech Dictionary.  Please see Appendix D: The Windows 

Speech Dictionary for how to add and remove words to/from the speech 

dictionary.  And another leap in performance to (97/101 = 96%) occurred after 

loading the name into the running grammar for track commands. See Figure 7 

Activity Diagram for loading track names into the loaded Grammar.  

 

Since there is reasonable suspicion that in addition to the actions taken to 

improve recognition, the sheer number of command repetitions plays some part 

in the improvements measured. Therefore, in order to eliminate the influence of 

machine learning on increased recognition performance, a follow-up experiment 

was conducted in which “Theremin” was first added to the Speech Dictionary 

(without first making so many command attempts). Then recognition success 

rates were measured before and after the name “Theremin” is loaded into the 

grammar.  The results for two complete experiments are given below. 



81 

 

 

 

 

 

Figure 18 Recognition Rates Before/After Loading “Theremin” into Grammar 

This experiment was further carried out on a larger set of tricky names, instead of 

only the name “Theremin” as shown in Table 4 Confused and Tricky Names.  

Notes: Wow: Had to be spelled out to get it to work the first 7 times, even after 

adding it to the dictionary.  This was because it was still confused with “While”.  

It didn‟t work without having to spell it until after it was re-loaded into the 

grammar.  After that, it worked correctly 9 out of 9 times. The complete tally for 

all tricky names is as follows: 

Intended Name Confused Name(s) Elaboration/solution 

Alto Sax “alta sachs”, “up to sax”, “otto sax/sachs” high saxophone 

Bass Base Bass guitar 

Cow bell Cal bell Dairy cow meadow sound 

Crotales Croat Olives NA, had to Spell it out 

Djembe  Must add to dictionary 

Kazoo Kazue  

Raisins Reasons dried grapes, Calif. Raisins 

93.8%

96.7%

92.5%

96.7%

90%

91%

92%

93%

94%

95%

96%

97%

98%

before after

First Iteration

Second Iteration



82 

 

 

 

 

Sticklavier N/A  ( it is a made-up word) Must add to dictionary 

Tapping Taping  

Theremin Sarandon, Thurman, Fairman, Salmon Russian Inventor 

Violins Violence Instrument 

"Vocal Scat" “Vocals get” “focal scat” “Vocal scout” Jazz scat singing 

Wow While NA, had to Spell it out 
Table 4 Confused and Tricky Names 

Word/ 
Technique 

Initially 
Neither in 

grammar nor 
in dictionary 

1st load into 
Grammar 

In grammar, 
(not in 

dictionary) 

Add to  
Dictionary 

(Not in 
grammar) 

2nd load into 
Grammar 

in grammar 
and 

dictionary 

After 
restarting In 
grammar and 

dictionary 
(cont.) 

Alto sax =2/2 =3/3 =2/2 =2/2 =14/15 

Bass =1/5 =4/4 =1/5 =3/3 =14/14 

Cowbell =2/5 =5/5 =2/2 =2/2 =13/13 

Crotales =0/4 =9/21 =5/5 =2/2 =14/14 

Djembe =0/2 =3/15 =5/5 =4/4 =13/13 

Kazoo =2/2 =5/5 =2/3 =2/2 =13/13 

Raisins =1/11 =5/8 =0/3 =13/17 =16/18 

Sticklavier =0/4 =5/5 =0/1 =2/2 =13/13 

Tapping =2/2 =5/5 =2/2 =2/2 =13/13 

Theremin =2/2 =3/3 =2/4 =2/3 =13/14 

Violins =2/2 =5/5 =2/2 =2/2 =15/16 

Vocal scat =2/5 =3/3 =3/3 =2/2 =13/13 

Wow =0/11 =0/8 =5/5 =4/4 =15/15 

Wow, spell it N/A =7/10 N/A N/A N/A 

Notes: x<59 59<x <162 163< x <205 x >205  

Table 5  Success/Attempt ratios for Adding Tricky Names to Dictionary and Grammar 

 

 



83 

 

 

 

 

 

Figure 19 Cumulative Successes Before and After loading into loaded grammar 

Discussion of results of Tricky Names and Dictionary/Grammar 

Purpose:  Expand beyond “Theremin” to include the many naming words that 

exhibited recognition problems.  Goal is to determine whether or not they can be 

interpreted reliably. 

 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Alto Sax

bass

cowbell

crotales

djembe

kazoo

raisins

theremin

violins

vocal scat

wow

sticklavier

tapping



84 

 

 

 

 

Interpretation:  The chart showing cumulative success shows a perfect string of 

successes as a steeply inclined smooth line.  The key events of adding words to 

the dictionary and loading them into the grammar are indicated in a more detailed 

view of the graph, to illustrate the effect of these two improvements. 

 

Conclusion: Loading names as choices into the grammar, so that dictation 

speech recognition is not required, does provide a measurable improvement in 

recognition accuracy, even for the trickiest words.   Adding words into the 

Speech Dictionary also provides measurable improvement in recognition 

accuracy, especially when a word is foreign (Djembe) or made-up (Sticklavier). 

Elaboration, and Loading Grammars using Homophone Pairs 

Table 14  Test 7: Homophone Tests of Elaboration and Loading into Grammar 

describes a multiple step experiment to measure the effectiveness of Elaboration, 

and subsequently, the effect of loading names into the grammar.  It uses 

Homophone pairs, which are words that sound the same but are spelled 

differently, like Presence and Presents.  The only way for a speech recognition 

engine to correctly discern words that sound the same is through the context in 

which they are used.  The way speech recognition gleans context is with 



85 

 

 

 

 

neighboring words.  Thus, elaboration may allow one spelling to be recognized 

over the other. 

 

The experiment uses pairs of homophones as input, first to see which spelling of 

the word is usually recognized.  For example, “Name this track „BASS‟” usually 

results in the name spelled “BASE”, by default.  Next, attempts are made to use 

Elaboration to assign the other (non-default) spelling of the word (in this case 

“BASS”).  If elaboration fails, then the name is assigned to the non-default 

spelling of the homophone by spelling it out.  (Name this track spelled B-A-S-S). 

Next, several attempts are made to issue commands on the item named the non-

default spelling of the word.  For example, “Mute the Bass”, “Solo the track 

named Bass”.  This establishes whether or not the unusual (non-default) spelling 

of the homophone continues to be misrecognized as the more commonly 

recognized (default) spelling.  i.e. even after having assigned the name, it fails to 

distinguish the homophone in the unusual sense of the word.  For example, if we 

were to name a track “Thyme”, which is the non-default spelling (“Time” is the 

more usual default spelling), then we can only hope that elaboration tips the 

balance toward the desired spelling of “Thyme”.  Otherwise we must assume the 

system favors “Time” simply because it is less unusual. 

 



86 

 

 

 

 

Finally, this non-default spelling of the name (Thyme, in our example) is loaded 

into the track command grammar.  Then more attempts to issue commands on 

this track are made. This shows that as a result of loading the name into the 

grammar, the unusual spelling of the homophonic word is finally reliably 

recognized over the more usual spelling of the word. 

 

Figure 20 Recognition Accuracy when assigning names using Elaboration 

0% 10% 20% 30% 40% 50% 60% 70%

hurts

wood

Presence

cord

Bass

rap

Beet

Wrap

weekly

four

auricle

tick

hymn

bated

elaboration success rates



87 

 

 

 

 

The homophone pairs which found no successes in all attempts at using 

Elaboration were:  Airy/Aerie, Aural/Oral, Away/Aweigh, Band/Banned, 

Basses/Basis, Belle/Bell, Bowed/Bode, Cymbals/Symbols, Haves/Halves, 

Hay/Hey, Him/Hymn, Loot/Lute, Lyre/Liar, Pairs/Pears, Paws/Pause, 

Rhyme/Rime, Root/Route, Sync/Sink, Thyme/Time, Tooter/Tutor, 

Undue/Undo, Weigh/Way, and Wrest/Rest. 



88 

 

 

 

 

 

Figure 21 Recognition Accuracy after loading homophones into loaded grammar 

100%
100%

90%
100%
100%

88%
100%
100%

65%
95%
94%

100%
100%
100%
100%
100%
100%
100%

87%
92%

100%
100%
100%
100%
100%

91%
90%
90%

100%
85%

100%

Banned

basses

bated

beet

belle

Bowed

bowed

cymbals 

fore

haves

hay

hurts

hymn

loot

lyre

miner

pairs

pared

rap

rite

root

stile

sync

Thyme

timbre

tutor

undue

weekly

weigh

wood

wrest

Recognition Accuracy 
(after loaded into Grammar)



89 

 

 

 

 

The non-default homophone of the homophone pair is used as the name that is 

loaded into the grammar.  The default homophone is more easily recognized 

using Dictation speech recognition, and therefore is not as good a test case.  

Using the homophone spelling which is decidedly harder to recognize contrasts 

the near-zero recognition accuracy before loading into grammar, with much-

improved accuracy (near perfect for many) after loading into grammar.  These 

non-default homophones had to be assigned to their respective tracks using the 

feature which allows one to spell out the desired track name. 

Discussion of results: 

Summary:  

The experimental results show that a high level of recognition accuracy is 

achieved when names are loaded into the grammar as choices for being the object 

of the command action.  This was true for almost all examples tested, once the 

non-default spelling of the homophone is loaded into the grammar as a choice of 

named items for the particular command family.  However, when assigning the 

names, elaboration was found to be generally ineffective, while spelling out the 

name of the tracks worked well as a last resort. 

Elaboration: 

Elaboration was unsuccessful most of the time [for homophones].  In a few 

instances, it was strikingly clear that the additional words provided as elaboration 



90 

 

 

 

 

were enough to make the difference between one spelling of the homophone and 

the other.  These cases are taken individually: 

Hertz versus Hurts: The default result of naming was “Hertz”, probably because 

“Hertz” is a proper name already.  When elaborating to say: “Name this track 

hurts like pain”, the result was successful 2 times out of 2.  However, referencing 

the “hurts” track using elaboration was only successful 1 of 3 times.  But, once 

the name “hurts” was loaded into the grammar, it was successfully referenced 15 

of 15 times without elaboration. 

 

Minor versus Miner: Minor was the default, but when adding “as in forty-niner” 

as elaboration, it returned “Miner” on 2 of 3 attempts.   Although a subsequent 

reference failed, once the name “Miner” was loaded into the grammar as a name 

option, the recognition accuracy went up to all 11 of 11 attempts. 

 

Presence versus Presents: Using the elaboration “Presence like in attendance” 

tipped the recognition engine toward “Presence” from the default result 

“Presents”.  This was successful in 3 of 3 attempts. However, saying “Presents 

like gifts” failed to produce “Presents”, but rather produced the other spelling 

“Presence” of the homophone pair. 

 



91 

 

 

 

 

Wood versus Would: The default result was “would”.  When elaborating to say: 

“Name this track wood, as in wooden”, the result was successful 2 out of 2 times, 

and after loading “wood” into the grammar, commands had a 20/24 success rate. 

Discussion of anomalies: 

Different default when singular from when it is plural: 

“Cord” was recognized as a singular word, but when plural, the other spelling of 

the word: “Chords” was recognized.  Elaboration, by saying “Like Piano Chords” 

“Like extension cord”, or Haves and halves, or Chorale and corrals. 

Favoring Proper Nouns (even foreign words) over common words: 

Occasionally the default name assigned by the track naming command appeared 

to be a foreign word.  The three cases found were: “peres” for pairs, “shanti” for 

shanty, “wei” for weight.  In addition, the names Orion and Ryan were assigned 

for “rhyme”, and Kazue for “kazoo”.   (Earlier, several observances of “Alta 

Sachs” or “Otto Sax” appeared for the instrument “alto sax”.  Each of these 

words is flagged by the Microsoft Word spell checker when not capitalized. If they 

are capitalized, then the spell checker accepts them.  This was my clue to the 

following possible explanation.  The fact that these words occur in a phrase that 

assigns a name, actually tips the decision toward a proper name and away from the 

common usage of the homophone in the test.  It must be that the analysis of the 



92 

 

 

 

 

entire phrase, beginning with “Name this track…” creates a greater statistical 

likelihood that the intended name is to be a proper noun, rather than one of a 

number of parts of speech that the homophones represent. 

 

Imperfect Homophones: 

Timbre and Timber are not always pronounced the same, and so are not really 

homophones.  Timbre was pronounced “Tam-ber”, in this experiment.  Also, the 

imperfect homophone pair of Basses and Basis are pronounced slightly 

differently in the second syllable.  Fort and Forte are pronounced distinctly 

differently, the first is one syllable, the second, Forte, is two syllables. 

 

Shortened, Slang or Recently Coined Words: 

Sync is short for synchronization, and shares a homophone with sink. 

Mic is short for microphone (mic), and shares a homophone with Mike.  Trying 

to name a track „MIC‟ would likely name it “mike” since Mike is a name.  Trying 

elaboration on mic, saying “like microphone” might work, but likely it would 

have to be spelled out.  The question is whether it would work after loading into 

grammar (or does it need to be added to the Dictionary – note how the spell 

checker flags it both Mic and mic). 

 



93 

 

 

 

 

Clipped “B” after “ck”: 

Two words had their beginning clipped: Beats and Band were both frequently 

misrecognized as “eats” and “and” respectively.  Something about the sequence 

of phonemes where “ck” is followed by B”, is hard to recognize, as in “Name 

this track” to “Band…”. 

Conclusions of Homophone Experiments: 

The graph in Figure 21 Recognition Accuracy after loading homophones into 

loaded grammar, shows a very high (100% in many trials) accuracy in track 

command recognition rates after loading the track names into the grammar.  This 

is true even when the non-default name is assigned to a track.  However, 

elaboration did not work in most cases, and when it did appear to influence the 

outcome of assigning a track name, it was not 100% reliable.  Spelling out a track 

name is a more sure method of assigning the desired spelling of a homophone.  

Combining spelling it out with the high reliability of loading the desired spelling 

of the homophone into the grammar, the results are convincing that even tricky 

names like those which sound the same as other words, can be used to refer to 

objects of action in recording. 

 



94 

 

 

 

 

Elaboration gives the user a sense that the system embodies some intelligence.  It 

is strangely miraculous when after repeatedly failing to recognize and assign an 

obscure name, it suddenly recognizes the name given an extra bit of information.  

The problem is that Elaboration is implemented as a simple rule applied to the 

string of text which fills the name slot of a phrase.  The overall command phrase 

is still that of assigning a name to something.  Therefore the words recognized as 

names tend to actually be names, like “Wei” (for “way”), or “Peres” (for “pairs”), 

or “Orion”, or “Ryan” (for “rhyme”).   

 

If the rule could decouple the context surrounding the Naming part of the 

command (“Name this track”), from the context surrounding the name and its 

associated elaboration (“rhyme, as in poetry”) then perhaps elaboration would 

perform better.  Further experiments using the homophones that did work well 

with elaboration: “Presents/presence”, “Hertz/hurts”, “Wood/would”, might 

yield a new rule that widens the performance coverage. 



95 

 

 

 

 

CHAPTER 5: CONTRIBUTION SUMMARY AND FUTURE WORK 

This thesis describes using voice commands for controlling the process of 

recording music.  Contributions toward achieving this are as follows: 

Contribution 1: A system supporting the multi-track audio recording workflow, 

which responds to voice commands is developed and measured for accuracy.  

The prototype system demonstrates the usefulness and effectiveness of the 

proposed hands-free workflow, and allows measurements to be made.  The 

system supports the measurement of accuracy by logging status for each speech 

command issued.   

Contribution 2: Changes and improvements made to Audacity, an open source 

audio recorder and editor, to support track commands issued by name.  These 

include the means of getting and setting the state of all tracks Mute or Solo 

settings.  Also added to Audacity was the means for setting a track parameter 

given the name of the track to which to apply the change. 

Naming tracks and then referring to them by name is explored as a way to 

improve system flexibility and usability.   

Contribution 3: Analysis of experimental data gathered from several test subjects 

in using the system to perform basic recording tasks is made.  Conclusions are 



96 

 

 

 

 

drawn of the effect of accent on the rate of performance improvement provided 

by the Speech Recognition Engine‟s machine learning capability. 

Contribution 4: Development and analysis of the Elaboration technique to 

improve name recognition is made.  More specifically, Elaboration is explored as 

a means of improving the recognition accuracy of tricky names such as 

“Theremin”.  While it worked only sporadically, it led to the homophone 

experiments which were useful test cases, and to the realization that the 

command phrase itself favors proper names over arbitrary common words, when 

assigning names to tracks. 

Contribution 5: The technique of loading all names as choices into a grammar in 

the Speech Recognition Engine is explored as an improvement in performance of 

commands that refer to named tracks.  When names are added to the grammar in 

this way, performance depends on Keyword speech recognition rather than 

having to continue to depend on dictation speech recognition, which, as shown 

in earlier experiments is not quite as reliable, as seen in the prevalence of the 

“Wrong Name” failure designation. 

Contribution 6: Two features of Windows Speech Recognition are measured for 

improving recognition accuracy, namely Adding a word to the Speech Dictionary, 

and Preventing recognition of confused words.  Measurement of the 

effectiveness of the system requires counting the number of failures in so many 



97 

 

 

 

 

attempts.  Measuring accuracy before and after improvements are implemented 

shows the validity of improvements.  Improved performance can be measured 

using the statistical approach given in [Sirota] “Minimum Sample Sizes for 

Attribute Superiority Comparisons”.  Any changes made should result in a 

statistically significant improvement in the distribution of Success and Failure. 

While it is intended that existing Human Computer Interface techniques will be 

used in this application, it was hoped that some entirely new techniques might be 

explored.  The concept of “Elaboration”, as in providing extra information to aid 

in recognition of tricky names, is explored as a possible improvement to the task 

of assigning names. 

The improvement in recognition accuracy was measured for several users and it 

was found that in all cases recognition accuracy did improve, although at different 

rates for different speakers.  Voices with accents required longer periods of use 

before reaching acceptable levels of accuracy. 

Progress was made in providing flexibility in how commands are phrased, by 

providing grammars which allow various phrase structures for the same 

command family.  For example, a user could say “Mute the guitar track”, “Mute 

the guitar”, or simply “Mute guitar”. 

It was discovered early on that naming items and subsequently referring to them 

by those names was an important way of issuing voice commands, beyond the 



98 

 

 

 

 

simple set of keyword commands.  Naming tracks and referring to tracks by 

name was described and test results were provided.  Numerous challenging cases 

in the form of “tricky names” were given, and improvement techniques were 

developed and measured results of their effectiveness were described.  

Discoveries of techniques to improve accuracy were made in the areas of naming 

tracks and subsequently referring to them by name. 

Contribution 7: The appendices to this Thesis constitute an organized 

presentation of the workflow, the problem and solution, experiments and 

conclusions, and an annotated bibliography in an easily accessible format. 

Future Work on SayPlay 

The following features have imminent use in SayPlay recording session control. 

Named Sections of Time: 

An important feature that was not implemented is the ability to name sections of 

a recording, for selection and playback.  For example, “Name the selected section 

“Bridge”, or “Chorus”, or “Recapitulation”.  And thereafter allowing the user to 

cue playback or recording to any of these named sections.  The reason this was 

not implemented is that the necessary changes to Audacity were a bit more 

extensive than time allowed. 



99 

 

 

 

 

Renaming Existing Commands: 

Another short-term improvement to the system would address the challenges in 

remembering exactly what the command phrases are.  The means for renaming 

commands could improve the ease of remembering the exact words for a given 

command.  Allowing the user to create custom command phrases, in addition to 

existing commands, should make the system easier to use. 

The paradigm for renaming a command is similar to naming a track or time 

section.   A similar feature is implemented in [Gorniak & Roy], “Augmenting …” 

wherein the user utters the desired command phrase to be used for a mouse click 

event.  The grammar structure for enabling this command is shown below: 

 

…

{ to be }

Play

Stop

{ as follows }

{ the } { Command }

Wildcard 

(Dictation)

Etc.

Rename

Redefine

Create an 

Alias for

Another?

Another?

{ Command }

 

Figure 22 Grammar structure to rename an existing keyword command 



100 

 

 

 

 

Once the new command name has been assigned, the user must somehow 

confirm that it is correct.  Only after confirmation will the new command phrase 

get added to the loaded grammar.  Renamed commands, or command aliases can 

get loaded into the speech recognition engine using the same technique as used 

for adding track names into the loaded grammar.  However, the new command 

alias will also have to be stored in a persistent fashion, so that from the moment 

of confirmation onward, and after quitting and restarting SayPlay, the new 

command phrase causes the desired command to take effect. 

Possible Future Work: 

The less immediate future direction could include some of the more ambitious 

ideas presented here. 

Portable Device: 

Beyond the convenience of having waveform displays of audio tracks, there is no 

reason why the recording and speech recognition software could not run on a 

tablet or even a smart phone.  As long as the microphone/instrument inputs and 

headphone outputs can be furnished, the software could be made to run hands-

free, once it is setup and ready. 



101 

 

 

 

 

 

Improved Event Logging: 

Events could be logged in a format which is more easily analyzed.  A set of tools 

for this analysis could be developed for analysis of user feedback (saying 

“Wrong” with a correction), for modeling the workflow (building up full-length 

tracks, then focusing in on specific sections for overdub, double-tracking, etc.), or 

for learning new commands or variations on existing commands.  This work 

could feed into the use of Intelligent Agents and Latent Semantic Analysis. 

 

Context Modeling: 

A challenge of context modeling systems has been determining changes in the 

intention of the speaker.  For example, whether a search is being refined, or 

whether a new search is beginning. In my approach, the user will state his 

intentions in a clear command, such as: “Computer, please enter Record 

Overdubs Mode”, or “Computer, please Audition for Mix”.  However, these 

mode changing commands were rather arbitrary, and were not tested for effect. 

Discourse level processing will come primarily from these stated intentions.  

Stated intentions can have a wide ranging scope.  A user may announce a long 

term goals with periodic effort being made, awaiting results from one stage to 

another, or a user may announce a more immediate goal.  In either case, the 

computer needs to acknowledge the request and present the user with a list of 



102 

 

 

 

 

steps, sub-goals and tasks to accomplish on the way to meeting that goal.  This 

serves both to confirm the correct understanding that the machine has of the 

goal, and to set the expectations of the user.   

 

Intelligent Agents: 

A set of software agents could carry out tasks on the recorded audio.  Tasks such 

as tempo analysis, mistake detection, lyrics transcription, and take naming are all 

possible tasks.  The essential tasks for the basic system are listening to voice 

commands, starting and stopping recording and playback, muting and soloing 

takes, setting volume levels, and naming takes and versions of songs. 

Each of these tasks will carry a tally for mistakes made by the system, and a list of 

the commands that are mistakenly performed (or not performed).  Improvement 

in performance can be measured by tracking the success and failure rates over 

time and in different recording scenarios.   

Learning agents may make it possible for key aspects of system performance to 

improve over time. When a system is developed with“Agent Based” architecture, 

then every aspect of system performance is subject to improvement.  [Russell] 

The challenge of doing this within the Music Recording workflow described in 

this thesis is that all voice commands are channeled in one direction from the 

SayPlay program to the Audacity program.  Success or failure of any given 



103 

 

 

 

 

command is indicated only by the user.   Thinking of the system as a circuit of 

events, the event begins with the users verbal command, it is received and 

analyzed by the speech recognition engine, managed by SayPlay.  An event with 

semantic information is directed to SayPlay by the speech recognition engine, and 

this event is analyzed by SayPlay which then generates and sends a command to 

Audacity which displays the command in the status bar, and carries it out if it can.  

Determining whether the command has correctly taken effect is done by the user. 

Allow multiple track names in one command: 

Allow the user to name an entity or set of them, so that it can be referred to by 

that name in subsequent commands.  For example, “Name this track „Piano‟”, 

followed by Play the track named „Piano‟”. 

Allow users to define new commands by speaking the command while manually 

performing the command (with mouse clicks, menus, etc.). 

Create custom training sets consisting of texts that the users will read, while the 

ASR system trains on the keywords within the text.  This text will be specific to 

the particular application, with command words that are appropriate to the task, 

such as recording music, or video, or lectures and presentations. 

 

Creating Names and Referring to Named Items in Other Applications: 

Can the techniques employed for voice command of music recording be 

transferred to other applications, such as video recording, meeting minutes 



104 

 

 

 

 

recording and summarization?   Any interactive work flow that involves the 

assembly of arbitrarily created units, into components of larger assemblies could 

benefit from the “Naming things and subsequently referring to them by name” 

interactive paradigm.  Tasks or sub-processes can be given names, and enacted by 

those names.  Examples of this are: 

Contact database entry and query 

Defining (and naming/invoking) Recurring Routines 

Describing the contents of a video or picture 

Audio Information Retrieval based on voice query 

Song selection and segment of song selection, by voice command.  This feature is 

merely an extension of existing commands, their command grammars, and the 

corresponding commands within Audacity.  New commands need to be added to 

the Audacity command set, to allow for label naming and recall by name. 

New research into the detection of emotion in the voice of the speaker may be 

put to use, and the result would be a system that adapted appropriately.  This 

goes further into context awareness. 

And general Human Computer Interface for long term system planning, such as 

upgrade scheduling, (it is problematic when a computer is restarted overnight 

following system upgrade installs, but when the user has several documents and 



105 

 

 

 

 

windows open and ready to continue working on.  The user must reopen all of 

them since the system has shut them all down, without any planning or 

scheduling). 

Projects could be organized, background searches could be performed, and larger 

scale projects managed by the computer more actively and effectively. 

 

What are the best Machine Learning techniques for expanding the range 

of commands available to the user? 

Is it going to be effective to use Latent Semantic Analysis of all spoken 

commands, combined with prompts for clarification, to distinguish commands 

from user notes and comments?  Will it be effective to divide the tasks of 

distinguishing which are commands and which are comments, from the tasks of 

clarification and discourse analysis, and to create agents that seek to accomplish 

these disparate goals?  Will these agents conflict, or conspire against each other, 

or enter cycles where one undoes the work done by another, only to be redone 

by the first?  Or will the agents become deadlocked and fail to continue because 

of some situation where each depends on the other, but neither can continue? 



106 

 

 

 

 

Conclusion 

It became clear early on that simple translation of menu commands into voice 

commands would not be sufficient to allow smooth and natural control over the 

track settings for listening back to recorded takes during a recording session.  

Having to incrementally select up and down from track to track in order to select 

the desired one, or having to select them by number, are both impractical because 

they burden the user with remembering the exact mapping of tracks.  This 

situation rendered the name as the best reference for working with tracks.  

Overall, speech recognition requires patience in the user, because a period of 

training is necessary for the recognition engine to model the individual user‟s 

specific way of speaking.  This period is also important for the user to become 

comfortable with the specific phrases for each command.  Some successful 

events are necessary for the user to be able to adjust accordingly.  Initially, it is 

best to use the standard set of track names {piano, vocal, guitar, drums}, which 

are loaded into the grammar from the start, in order to experience some initial 

success. 

Name referencing commands require the use of Dictation Speech Recognition to 

assign names of a wildcard nature.  It was found that track naming commands 

had lower recognition accuracy than keyword commands, due to the greater 



107 

 

 

 

 

difficulty recognizing tricky names relying upon dictation speech recognition.  

Development efforts to improve the assignment of and reference to named 

entities showed measurable improvement. These developments were: spelling out 

the name, followed by loading all track names into the running grammar. 

In addition, the features provided in Windows Speech Recognition for adding 

words to the dictionary, and for preventing dictation of confused words, are also 

available, and the resulting performance increase was measured.  Finally, the 

techniques of Elaboration and the associated overriding Quotation technique 

were found to be less effective than imagined, but experiments with homophones 

revealed that the name assignment command favors proper names over similar 

sounding words which do not usually serve as names. 

The specific domain of audio recording can benefit from voice commands, when 

an integral part of the workflow allows tracks to be named, so that they may be 

referred to by name.    

The techniques used within the domain of music recording could be applied in 

other domains where the workflow involves the need for hands free control, such 

as camera operation and robot control. 



108 

 

 

 

 

APPENDIX A: STORYBOARD DESCRIPTIONS OF RECORDING 

SESSION WORKFLOW 

Recording a set of new pieces (also known as recording Basic Tracks) 

Recording overdubs (additional layers on top of existing recordings) 

Re-Recording sections of a piece, for later editing (punch-in) 

Basic Preparation 

Set Recording Levels, ensure each instrument microphone is functioning, has 

proper settings and placement, and that the signal path into the recorder is 

functioning and clean.  Ensure proper signal levels are set by having the 

performer play at the loud extreme of their dynamic range, to avoid saturation 

during the peaks, and have them play softly to ensure a good signal to noise level. 

Once the recording equipment is all set up and working, the headphone monitor 

mixes need to be set to comfortable listening levels for the producer and each 

musician to hear the other instruments. 

The musicians can warm up during the process of setting monitor mixing levels, 

and finally, they should make any adjustments to the tuning and intonation of 

their instruments. 



109 

 

 

 

 

 

Figure 23 Recording Overdubs 

Announce Basic Track 

Start
Basic Tracks 

Recording

Overdubs 

Recording

Mixing

Editing

No

Final Mixdown

Mastering Stop

Finished 

Tracking?

Yes



110 

 

 

 

 

The producer will say a few words about the ordering of the recordings to be 

made, and more specifically about the first piece to record.  These comments 

should be recorded by the system, as recording session notes.  The performers 

may also offer insights about their interpretation, which may be of interest later 

on.  So, all these conversations are recorded as notes for the session. 

Once the producer announces the ready for recording the first take, notes are 

saved with the piece and take. 

Recording the First Take: 

The producer may ask the musicians to play the piece once without recording.  It 

is helpful to record this take anyway, since often times it has none of the pressure 

of the first “real” recording, and it can sometimes turn out to be the best take. 

Musicians are not discouraged from continuing if a mistake is made, and they can 

get a fresh perspective on the piece as performed in the studio surroundings. 

 

Once real takes are recorded in earnest, performance mistakes can become more 

frustrating, sometimes resulting in even more mistakes and frustration.   

One of the goals of the system is to remove the tension of the recording process, 

so that performers barely notice they‟re being recorded, except when listening 

back to a recorded take.  Imagine a recording session in which no recording is 



111 

 

 

 

 

going on.  This is called a rehearsal.  It may not be so different from one in which 

everything is being recorded.  A rehearsal where everything is recorded captures a 

live performance but without the audience.  This may be a picture of the ideal 

basic track.  But, there are some challenges associated with getting everything 

recorded, so that it‟s easy to listen back to during the session and easy to access 

later on.  This is where voice commands come to the rescue. 

Play 

Audio

Record 

Take
Keep?

Delete Take

NO

Call it 

“Best”

Best?Yes

Call it 

“Alternate”

Yes

NO

Name ItNumber It

Adjust Pan/

Volume 

Setting

Select 

Tracks 

Solo/Mute

Set Start of Play 

forward/back

(FF, REW)

 

Figure 24  Workflow for recording Overdubs 



112 

 

 

 

 

The following table gives a storyboard for recording the first take of a 

performance: 

Producer Says System Does 

Let‟s Start Recording or Another Recording Starts recording, marks take number 
Start time is set on level exceeding a threshold 

Let‟s Record a take or Record another take Begin recording while playing back other tracks 

Let‟s hear that back Plays back last recording from start 

Let‟s hear the first one played back Solo the first track and start playback 

From the last verse Set play pointer to desired location, and play 

No, the verse before Set play pointer to desired location, and play 

No, 4 bars later Set play pointer to desired location, and play 

No, the take before Set play pointer to desired location, and play 

Ok, stop playback Stop playback 

Everyone ready? nothing 

Let‟s work on the [cellos, vocals,  etc.] tracks Keeps tracks armed for recording 

 

Re-Recording, the second, third, fourth takes, and so on… 

Sometimes a producer may want several versions of a piece, played at different 

tempos, perhaps in a different key, or perhaps with different moods or intensity.  

Or a producer may be focused on a very specific rendition, and will keep the 

band trying to reproduce it time after failing time. 

 

The following table gives a list of terms and what they refer to.  This is a starting 

point for the system to begin to understand what the producer means when 

asking for each particular item.  There may be synonyms for these items, and 



113 

 

 

 

 

since all synonyms cannot be listed (predicted) in advance, the system can be 

taught what new ones mean, in terms of the ones in this table: 

Term What refers to 

This take The upcoming (yet to be recorded) take OR The take 
just recorded 

Last take The take just recorded 

Next take The take following the one commonly referred to.  If 
the commonly referred to take is several previous, then 
next is the one following.  If the commonly referred to 
take is the last take, then next is the same as This take. 

(Un) Solo {This, 
named} Track 

Mute all other tracks, to audition only the indicated 
track 

Un/Mute {This, 
named} Track 

Mutes/Unmute the named track 

Table 6 Terms referring to track commands 

“Fix it in the Mix” 

Decisions are made as whether or not to record another take, based essentially on 

whether the last take was reparable.  Digital audio recording software can provide 

a variety of tools for correcting problems in any recording, and so it is the 

producers decision based on what he knows can be done.  For example, a few 

notes being early or late, just not quite right on the beat, can be edited so that 

they fall right on the beat as desired.  This problem does not require re-recording.   

Adding titles, comments and notes to recordings: Frequently notations about the 

recorded version must be made, usually as indicators for further work to be done 



114 

 

 

 

 

or decisions to be made.  Markers and labels are useful for doing this when they 

can be easily recalled by name. 

Recording Music: 

Music Recording is the process of recording an ensemble of musicians and then 

mixing them together into a pleasing blend.  Each part of the ensemble may be 

recorded several times in order to get the best performance, and from each of 

these several recordings, shorter time spans can be edited together to create a 

seamless realistic performance.  The process of obtaining this final edited 

performance is by repeated recording and listening back to the recorded parts to 

select which parts to use in the assembly of the complete whole. 

The producer will ask the performer to play in certain ways, to make changes, or 

an individual performer/producer will ask to hear back a particular take, or will 

announce the name of a new take, and some distinguishing feature, to be 

recorded as a note (stored as metadata) about the take. 



115 

 

 

 

 

Recording Voice: 

Usually called “Voice-Over” recording, the recording of an individual‟s speech 

for dramatic, journalistic, or documentary purposes, is a process much like 

recording music, except that instead of synchronizing the performance with those 

of other musicians, the speaker (called the “talent”), must sometimes synchronize 

their performance with a video recording. 

Training the computer on the prosodic components of a dramatic delivery, where 

the script is given, and various expressive “angles” are explored by the acting 

talent.  Each “angle” has to be given a name, so the system can associate the 

prosodic queues with the differences in this dramatic delivery from others with 

the same, and with different “angles”.  

Naming Events System Does 

Name This Track …X Assigns the name of the currently selected track to the name 
given by user 

Name the recorded 
track...X 

Assigns the name of the last (bottom) track to the name given by 
user Most recently recorded tracks are placed on the bottom. 

Name this Take… X Assigns the name to the current Take, as recorded by the context 
of the system. 

Table 7 Naming Tracks and Takes 



116 

 

 

 

 

APPENDIX B: THE DEMONSTRATION SYSTEM 

The demonstration system consists of a Dell Inspiron 1525 laptop computer, 

running the Windows Vista or Windows 7 operating system, and two software 

applications developed for this research, and a USB headset microphone. 

The first application is a modified version of Audacity, an open source digital 

audio recording and editing program, available at: 

http://audacity.sourceforge.net/ 

 

Figure 25 Audacity User Interface with annotations 

http://audacity.sourceforge.net/


117 

 

 

 

 

The second program is called “SayPlay”, developed specifically for this research.  

SayPlay uses the Windows Speech Recognition engine to interpret speech 

recognition events from speech input, and sends commands to Audacity.   

 

Figure 26 The SayPlay program written for this research 

The “SayPlay”, application, and the modifications to Audacity are the primary 

focus of the development part of this Thesis.   

A context diagram of the Audacity and SayPlay applications is shown below: 



118 

 

 

 

 

From an executive level, a program for managing the interaction with the speech 

recognition engine, and the events it generates.   

A class hierarchy called a CommandFamily is used to make Voice Command 

events appear as a uniform type of event, and to allow special case handling to be 

done based on the individual type of command.  

The primary CommandFamily methods are BuildGrammarFromScratch, and 

HandleCommand.  These two methods are called at the highest level, for all 

CommandFamily objects, first to build the grammar to load into the Speech 

Recognition Engine, and thereafter, for handling the events generated by the 

recognition engine for each.  So, all the specifics about grammar structure and 

special handling instructions are encapsulated into the subclass. 



119 

 

 

 

 

 

Figure 27 Class Diagram of the CommandFamily in SayPlay 

A Context Manager is implemented to manage state, and to filter events through 

the current context (or state) of the recording process.  This can allow the system 

to refine the semantic interpretation of certain voice commands.  For example, a 

command that refers to ordinal numbered tracks, such as “mute the second 

track”, or “mute the second guitar take”, where the semantic difference is 

between “Track” and “Take”.  “Track” is an absolute number, whereas “Take” 

indicates an offset from the first among the recorded guitar takes. 



120 

 

 

 

 

SayPlay application

Session

Context

Agent

SpeechRecognition

Engine

Audacity Application

Session

PipeServer

Scripter

Callback

Named Pipe

RemoteIPC

CommandFamily

HandleCommand

BuildGrammar

CommandManager

Get/Set 

ProjectInfo 

Command

Get/Set 

TrackInfo 

Command

Exec 

MenuCommand

 

Figure 28 Context Diagram of SayPlay and Audacity applications 

Voice commands originate from SayPlay and are sent to Audacity over a named 

pipe to Audacity, which returns status information to SayPlay. 

SayPlay is the tool which accepts spoken commands such as “Play”, “Record”, 

“Pause”, and “Rewind”, and issues the corresponding command to Audacity.  



121 

 

 

 

 

These commands are the simplest level of control, and alone may not prove 

worthwhile, since the user is likely to need to use the mouse for entering text.   

The following activity diagrams show the steps in the following actions: Naming 

a track by spelling it out, Naming a track by elaboration, and loading the names 

into the loaded grammar. 

SayPlay AudacityWindows Speech 

Recognition

User

Send Command to 

Name Track # N

“djembe”

Send Command to get 

Number of Tracks = N

Is 

Confidence 

> 0.93?    

User says "Name the 

recorded track spelled

D-J-E-M-B-E"

Recognition Event:

Name Recorded Track 

D-J-E-M-B-E

Return 

Track 

Count

YES

Set Track N 

Name To djembe

Parse name string to

Remove periods, spaces

And capitalization

User visually confirms 

the Correct assignment 

of the track name 

'djembe'

 

Figure 29 Activity Diagram for naming a track by spelling out the name 



122 

 

 

 

 

SayPlay AudacityWindows Speech 

Recognition

User

Send Command to 

Name Track # N

“theremin”

Send Command to get 

Number of Tracks = N

Is 

Confidence 

> 0.93?    

User says "Name the 

recorded track „Theremin,

Like the Russian Inventor"

Recognition Event:

Name Recorded Track 

„Theremin,Like 

the Russian Inventor"

Return 

Track 

Count

YES

Set Track N 

Name To theremin

User visually confirms 

the Correct assignment 

of the track name 

'theremin'

Does

Name String 

Contain “Like” or 

“As In”?

YES

Truncate name string at 

“Like” Or “As In”, to 

retain only the desired 

name “Theremin”

 

Figure 30 Activity Diagram for naming a track using “Elaboration” 

 

 



123 

 

 

 

 

SayPlay AudacityWindows Speech 

Recognition

User

Send “Play” Command

Is 

Confidence 

> 0.93?    

User says "Play the 

track named „Theremin"

Recognition Event:

"Play the track 

named „Theremin"

Play

YES

User audibly confirms 

the correct  track is heard

Send Command to 

Unsolo all tracks

Send Command to 

Solo track named 

“Theremin”

Solo track named 

“Theremin”

UnSolo all tracks

 

Figure 31 Activity Diagram for the Track Command to Play a Named Track 

Finally, an Agent interface is provided, such that a list of agents can be registered 

with the event handlers of the Chain of Responsibility.  These agents have access 

to the voice command data at the time of the detection of a recognized event, 

and can log recognition event information to a file, for later semantic and 

statistical analysis. 



124 

 

 

 

 

APPENDIX C: SETTING UP WINDOWS SPEECH RECOGNITION 

Purpose:  To measure the accuracy (as ratio of success to the total of success and 

failure) of the system at performing speech recognition commands.  Various 

commands are exercised. 

 

System Requirements: Windows Vista Business or Windows 7.  Speech 

Recognition SAPI 3.5 or later, Visual Studio 2008, and the 2 projects: 

Audacity.sln and SayPlay.sln. 

 

Software Under Test:  “SayPlay” is the program which accepts voice commands 

and “Audacity” is the audio recorder and editing software used to record and play 

tracks of audio.   

 

Setup: In preparation for using Microsoft Windows Speech Recognition, please 

open the Speech Recognition Options control panel, and select the “Set up 

microphone” configuration option.  You must use a headset microphone for best 

results. These selections are indicated in the figure below.   



125 

 

 

 

 

 

Figure 32 Speech Recognition microphone setup 

 

The following dialog appears, allowing you to speak for awhile so the mic level 

can be optimally set. 

As instructed, please heed the following advice: 

Proper Microphone placement 

Position the microphone about an inch from your mouth, off to one side 

Do not breathe directly into the microphone 

Make sure the mute button is not set to mute 



126 

 

 

 

 

 

Figure 33 Speech Recognition Microphone Setup for levels 

 

As you speak, the green bar, indicated above by the red arrow, will show the 

audio signal level.  Setting the microphone level is done automatically based on 

this process, so it is important to speak at the same loudness level that you will 

normally use.  If you speak louder than normally, the mic level will be set lower 

than it should, and, conversely, if you speak quieter, then the mic level will be set 

too high. 

 

Once this process is complete, the next step is to set up a User Profile. 



127 

 

 

 

 

Enter the Advanced speech options, as shown below: 

 

Figure 34 Speech Recognition Control Panel Advanced Options 

Create a profile for the test subject, using the “New Profile” button, as shown on 

the window below.  

 



128 

 

 

 

 

 

Figure 35 Speech Recognition profiles 

It can help to verify that the microphone input signal level is a reasonable setting: 



129 

 

 

 

 

 

Figure 36 Selecting the Speech Recognition Control Panel for Microphone Level 

 

Next, perform one or more training sessions, found by clicking on “Train your 

computer to better understand you”.  Read aloud the text prompts to improve 

the Speech Recognition Engine‟s performance at recognizing specific 

characteristics of your voice. 

 

1 

2 

2 

3 

3 

4 

4 



130 

 

 

 

 

 

Figure 37 Speech Recognition Control Panel Options, initiating a training session 

 

Figure 38 Speech Recognition Voice Training dialog 



131 

 

 

 

 

There are two training sessions that can be performed, and they may be repeated 

even after both are completed.  The first one is called:  “By listening to you read 

aloud to the computer, speech recognition learns how you speak. “  It begins 

with:  “I am now speaking to my computer.”  And it and ends with:  “This 

concludes the tips for speech recognition training session”. “To Read more about 

tips”, “Look in the help documentation for speech”. 

 

The second training session begins with:  “Speech is the main way for people to 

bond and learn from each other”.   And ends with:  “The computer then enters 

this dictation into the program as text”, and “This concludes the Speech 

Recognition background information training session”. “To learn more about 

Speech Recognition”, ““Look in the help documentation for speech”. 

 

 



132 

 

 

 

 

APPENDIX D: THE WINDOWS SPEECH DICTIONARY 

Microsoft Windows Speech Recognition provides the means of interacting 

directly with the Speech Recognition Dictionary: pairs of words and their 

pronunciation, in order to enable successful rendering as text from spoken words. 

This technique is very helpful when words, such as “Theremin” do not seem to 

be present in the dictionary.  The ability to add a word to the dictionary is a 

standard part of the Windows Speech Recognition feature (in Windows Vista/7). 

 

Figure 39 Adding a word to the Windows Speech Dictionary. 

Near the end of the process, the user can provide a proper pronunciation of the 

word, by recording a spoken example.   



133 

 

 

 

 

 

Figure 40 Record a pronunciation of new word added. 

Ideally, this would be done automatically whenever a new name is not already in 

the dictionary, and has been deemed correct. However, we wouldn‟t want to add 

every mistaken name to the dictionary; only once the correct name is assigned.  It 

is for this reason that the user must issue the command to get all the assigned 

names to load them into the actual grammar structure that the engine using.   

However, a way to automatically add words to the dictionary when needed was 

not discovered.  Moreover, the ability to automatically prevent confused words 

from being recognized temporarily until the correct word is recognized and 

added to the list of choices in the loaded grammar, was also not discovered.    



134 

 

 

 

 

Prevent a Word from Being Recognized 

When particular name is repeatedly misrecognized as a different word, for 

example, even after naming a track “Wow” and adding “Wow” to the Speech 

Dictionary, it gets repeatedly mistaken for the word “While”.  The user can 

manually request that “While” not be recognized, so that “Wow” is correctly 

recognized.  Figures 30 and 31 show how to prevent a word being dictated.  

Ideally this would be done (temporarily) when the user says “Wrong” after 

repeating a command using the same name, and getting the same wrong name. 

 

Figure 41 Prevent a Name from Being Recognized 



135 

 

 

 

 

 

Figure 42 Prevent a word from being dictated. 

Desired Function of ideal system:  In the scenario of naming a track using a word 

not in the dictionary, the user must spell out the desired word, then once assigned 

correctly, save the session, and before adding the word to the list of possible track 

names, the word is tested for presence in the Windows Speech Dictionary for this 

user.  If not present, then it is automatically added, and the user is given the 

chance to speak the word once, for the purposes of recording the correct 

pronunciation. In the scenario of preventing the recognition of a confused name:   

when a wrong name is assigned, the user says “Incorrect, the right name should 

be X”, then the mistaken name is temporarily prevented from being recognized 

as dictation.  So now, when the user repeats the command, a different, and 

hopefully the correct name will be recognized. 



136 

 

 

 

 

APPENDIX E: TEST PROCEDURE  

Purpose:  To measure the accuracy (as ratio of success to the total of success and 

failure) of the system at performing speech recognition commands.  Various 

commands are exercised. 

System Requirements: Windows Vista Business or Windows 7.  Speech 

Recognition SAPI 3.5 or later, Visual Studio 2008, and the 2 projects: 

Audacity.sln and SayPlay.sln.  Alternately, the experiment may be performed 

without Visual Studio by installing released versions of SayPlay and the custom 

modified version of Audacity. 

 

Software Under Test:  “SayPlay” is the program which accepts voice commands 

and “Audacity” is the audio recorder and editing software used to record and play 

tracks of audio.   

 

Setup: In preparation for using Microsoft Windows Speech Recognition, please 

follow the instructions in Appendix C: Setting up for Speech Recognition  

Perform one training session at the beginning of each testing session.  Once the 

training session is complete, the speech recognition control panel may be closed.  

Remember, however, to return the selected speech recognition profile to a default 



137 

 

 

 

 

setting before any further use, in order to prevent the test subject‟s speech 

recognition profile from being corrupted by another speaker. 

Launch Audacity and SayPlay, and verify the correct functioning of the voice 

command system by uttering a test “Play” command.

 

Figure 43 Audacity with custom SayPlay script status display 

Each command can be verified received by Audacity when it is printed in the 

bottom status bar, as shown in Figure 43 Audacity with custom SayPlay script 



138 

 

 

 

 

status display: “Received Script command: Set TrackInfo:…”. For most 

commands the action of the command can be observed taking place.  

 

Troubleshooting: If the system appears to be performing erratically, as in 

commands that had been readily recognized are now problematic, then it is likely 

that the microphone level has a setting which is too low, or too high.  See Figure 

32 Speech Recognition microphone setup for how to setup a microphone level. 

 

After Conducting a Test: Remember, when finished testing, to return the 

selected speech recognition profile to a default setting before any further use, in 

order to prevent the test subject‟s speech recognition profile from being 

corrupted by another speaker. 

 

Figure 44 Windows Speech Recognition Profiles. 

 



139 

 

 

 

 

Test 1:  Basic transport commands Time to Run Test:  12 mins 

 Table 3 Test Plan Baseline performance test, mean WSR 
Confidence 

Say “Play” to start playback.   
 
Wait a few moments and if it starts playback, say “Correct”.  If after a few moments, 
nothing happens, say “Wrong, nothing happened”. 
 
Once the system is playing back, say “Stop”.  If playback stops, say “Correct”.  If 
after a few moments playback does not stop, say “Wrong”.    
 
Repeat > 25 times, for Play, Stop, Record and Save also. 

Notes: 
When saying “Wrong” to indicate a failed command, one may also add a comment 
about what went wrong, such as “nothing happened”, or “The two previous 
commands were not followed”. 
Sometimes a user will forget to say “Correct” when a command is usually right.  In 
this case the subsequent following command is given.   
Sometimes saying “Wrong” is forgotten when a command is sometimes wrong. In 
this case the command is repeated. 
Sometimes the judgment of Correct or Wrong is rendered more than one 
command later, because, as mentioned in the examples above, it was correct, so it 
was not repeated, or it was incorrect, and so it had to be repeated. 

Table 8  Test 1 Procedure: Baseline Measure 

The next test exercises a much larger set of commands available through the 

Audacity scripting interface.  Each command should be exercised at least 10 

times.  The resulting log file is sorted by command name, and the confidence 

values are averaged per command, and sorted from highest to lowest.  The goal is 

to determine the best choice for the confidence threshold.  This is the value 

above which the confidence value returned with the recognition event from the 

speech recognition engine must be, in order for the command to be acted upon.  

Note that this is not the same as the statistical measure called the confidence 



140 

 

 

 

 

interval.  It is part of the recognition event data structure returned from the 

speech recognition engine. 

These command names could be changed in software, to something easier to 

remember, but each user has different preferences, and so the ideal solution is to 

allow the user to state their desired name for each command.  This feature was 

not implemented and is described in the “Future Work” section of Chapter 5. 



141 

 

 

 

 

Test 2 Table 3 Test Plan Figure 10 Mean Confidence value returned 
from WSR Engine 

Issue each command multiple times, recording pass/fail status 

Command Audacity Script  Desired Effect 

play Play Begin playback 

stop Stop Stop recording/playback 

record Record Begin recording 

pause Pause Pause playback  

save Save Save session document 

undo Undo Undo last command 

redo Redo Redo last command 

new New Create a new session 

cut Cut Remove selected audio 

split cut SplitCut  

copy Copy  

paste Paste Insert audio from scrap 

trim Trim  

delete Delete  

split delete SplitDelete  

silence Silence Selected audio should silence 

split new SplitNew  

join Join  

disjoin Disjoin  

duplicate Duplicate  

skip start SkipStart Play cursor returns to start 

skip end SkipEnd Play cursor jumps to end 

previous track PrevTrack Focused track moves up one 

next track NextTrack Focused track moves down one 

mute all tracks MuteAllTracks  

unmute all tracks UnMuteAllTracks  

unsolo all tracks UnSoloAllTracks  

cursor short jump left CursorShortJumpLeft cursor jump left ~5 seconds 

cursor short jump right CursorShortJumpRight cursor jump right ~5  

cursor long jump left CursorLongJumpLeft cursor jump left ~15 sec 

cursor long jump right CursorLongJumpRight cursor jumps right ~15  

set left selection SetLeftSelection  

set right selection SetRightSelection  

select start cursor SelStartCursor  

select cursor end SelCursorEnd  

zero crossing ZeroCross cursor to nearest zero crossing 

cursor select start CursSelStart  



142 

 

 

 

 

Table 9  Test 2 All Keyword Commands 

Test 3: Track Commands  (Un)Mute and (Un)Solo by name.  Tests run on 
many different test subjects, w/and w/out accents. 

Time to Run 
Test:  12 mins 

Say (Un)Solo/(Un)Mute the X track, where X = { piano, guitar, bass, vocal, drums, snare drum, hi 
hat, kick drum, crash, ride, percussion, trumpet, clarinet, flute, horn, trombone, saxophone, alto sax, 
tenor sax, soprano sax, accordian, trumpet, harpsichord} 
 
Also Say “UnMute All Tracks” and Say “UnSolo All Tracks”.  NOTE: The command “Unsolo All 
Tracks” does not work while in playback. 

Table 10  Test 3 Test Procedure: Field Trials 

Test 4: Adding Tricky Names to the Windows Speech Dictionary 

Try to issue commands on the following tracks by name: {  Crotales, Gambales, Wow, While } 
Then, add the name to the Windows Speech Dictionary 
Repeat the action of issuing track names as above. 
Record Success/failure verbally using “Pass”, or “Correct”, and “Fail”, or “Wrong” 

Table 11  Test 4 Test Procedure: Tricky Names 

 

cursor select end CursSelEnd  

cursor track start CursTrackStart  

select extreme left SelExtLeft  

select extreme right SelExtRight  

select set extreme left SelSetExtLeft  

select set extreme right SelSetExtRight  

select center left SelCntrLeft  

select center right SelCntrRight  

track gain increment TrackGainInc Focused track gain increments 

track gain decrement TrackGainDec Focused track gain decrements 

silence labels SilenceLabels  

split labels SplitLabels  

disjoin labels DisjoinLabels  

select all SelectAll  

select none SelectNone  



143 

 

 

 

 

Test 5: Add Thermin to Dictionary & Grammar Actions: (Navigation Table 3 Test Plan) 

Name a track “Theremin”  

Assign with elaboration “Name this track Theremin like the Russian 
inventor Science Fiction Movie Sound, Good 
Vibrations. 

Refer to name (Un)Mute, (Un)Solo, Pan, Theremin 

Prevent Dictation of confused name “Sarandon” See Appendix for how to prevent dictation of 
words. 

Add Names to Grammar “Computer, Please Refresh the Session” 

Commands which 5Refer to name accuracy (Un)Mute, (Un)Solo, Pan, etc. 

Name a track “Theremin” then Perform several track commands (Mute etc.) on Theremin 
track 
Prevent dictation of the frequently confused word “Sarandon” and repeat the performance 
of several track commands on the Theremin track (Mute the Theremin, etc.) 
Add the word “Theremin” to the Windows Speech Dictionary, and measure the results as 
above. 
Add the track names into the running grammar, and repeat commands as above. 

Table 12  Test 5: Effectiveness Adding Theremin to Dictionary and Grammar 

 

Test 6: Adding to Dictionary & Loading Grammar  Action (Table 3 Test Plan) 

Name a track from the list of tricky names “Name this track X” 

Refer to name (Un)Mute, (Un)Solo, Pan, Theremin 

If (obscure) name is never recognized, add it to Dictionary  

Add Names to Grammar “Computer, Please Refresh the 
Session” 

Commands which Refer to Tracks by name: (Un)Mute, (Un)Solo, Pan, etc. 

Name a track the known tricky name from the following list:  Alto sax, Bass, Cowbell, Crotales, 
Djembe, Kazoo, Raisins, Sticklavier, Tapping, Theremin, Violins, Vocal scat, Wow 
Perform ~3-5 track commands on the each track (Mute the Theremin, etc.) 
If there are no positive recognition events, add the word to the Windows Speech Dictionary. 
Add the track name into the running grammar, and repeat commands as above ~15 times. 

Table 13  Test 6: Adding Tricky Names to Dictionary and Grammar 



144 

 

 

 

 

Test 7: Elaboration & Loading Grammar  Action                  (Navigation: Table 3 Test Plan) 

Name a track from homophone list Name this track X (or Y). 

Result is deemed to be the default  

If failure try assigning with elaboration Name this track X like Y 

Refer to name with Track Commands (Un)Mute, (Un)Solo, Pan, etc. 

Name track from homophone list alternate Name this track A 

If fails, Assign with elaboration from list Name this track A like B 

If assignment fails, use Spelling it out Name this track spelled a.b.c.d.etc. 

Refer to name with Track Commands (Un)Mute, (Un)Solo, Pan, etc. 

Add Names to Grammar Computer Please Refresh Session 

Refer to name with Track Commands (Un)Mute, (Un)Solo, Pan, etc. 

Purpose of Experiment: Use homophone pairs as input in assigning names, to test whether 
elaboration is effective.  Homophones sound the same, but are spelled differently.  One or the other 
should be recognized when speaking the sound for both.  Elaboration may allow selection of one or 
the other.  In addition, loading the desired spelling into the grammar may provide correct recognition 
of the desired spelling of the word. 
 
Background Information: 
In general, without adding any extra elaborating words, one spelling of the homophone pair will be 
recognized more than the spelling.  This dominant result is called the “Default” result for the 
homophone.  The alternative spelling of the word (the one not generally recognized) is called the 
“non-default” spelling for the purposes of this experiment. 
 
Elaboration (adding some extra words, using “Like” or “As In”) could cause the likelihood of 
recognition to tip one way or the other, and to select either the default or the non-default sense of 
the homophonous word, depending on the associated words used in elaboration. 
 
For example, saying “Name this track bass, as in bass guitar”, should select “Bass” over “Base”. 
 
The overall steps of the experiment involve determining which spelling is the default, and then trying 
to obtain accurate recognition of the non-default spelling of the word by using elaboration. 
 
If no positive recognition of the non-default spelling of the homophone pair can be found using 
elaboration, then the name is assigned by spelling it out. 
 
For example, using the homophone pair Presence/Presents, the user simply commands: “Name this 
track (presence/presents)” (Remember both sound the same).  The result (“Presents”) is deemed to 
be the default.   Next, the experimenter attempts to assign the non-default spelling of the word 
“Presence”, using elaboration:  “Name this track presence like in attendance”.  If this is successful, 



145 

 

 

 

 

then this is a case of successful elaboration, since the recognition result was steered away from the 
default and to the non-default result by elaboration.    
 
If all attempts at elaboration fail to result in a correct recognition of the non-default spelling of the 
homophone pair under test, then the non-default form is assigned by spelling it out.  For example, 
after all attempts at naming the track “Lyre” fail using elaboration (Name this track Lyre as in the 
ancient Greek harp) then the experimenter says “Name this track spelled L-Y-R-E”.  Once this is 
done correctly, the non-default form of the homophone can be loaded into the grammar as a 
legitimate track name choice.  The command to load all track names into the grammar is: “Computer, 
please refresh the session”. 
 
Now that the non-default spelling of the homophone has been assigned and loaded into the 
grammar, so that the speech recognition engine doesn‟t have to rely on dictation speech recognition, 
it is tested for accuracy. 
 
Several commands are then issued on the track by name, and successful results are tallied.  This 
demonstrates whether or not the non-default spelling of the homophone pair can be used. 
 
When issuing the command, the dominant word sense recognized is called the “default”.  For 
example, if we use the Base/Bass homophone pair, and “Base” is commonly recognized, then Base is 
considered the default spelling of the homophone pair Base/Bass. 
 
Elaboration is then used to attempt successful recognition of the non-default spelling.  If all attempts 
fail, then we force the name assignment by spelling it out.   
 
Once the non-default name has been assigned by spelling it out, commands are attempted on it.  The 
expectation is that the speech recognizer continues to recognize the homophonic word as the default.   
 
This is when we add the non-default name to the running grammar.  Several commands issued on 
the track now should be successful.  For statistical significance, there should be at least 10 successes 
in a row.  This illustrates the improving effect of having the words be loaded into the grammar, and 
in fact, it doesn‟t work at all otherwise. 
 
Note that it is not possible to load both homophonic words into the grammar, because they sound 
exactly the same, and one would get all the recognition hits. 
 
Steps to Reproduce Experiment: 
For each pair of homophones in the associated list below, do the following: 
Name a track from the list of homophones 



146 

 

 

 

 

Identify which spelling is the “Default” recognized spelling.  This is the resulting name which occurs 
most often.  If it is neither of the two homophones, then indicate Default is “neither”. 
Initiate several (~10-20) commands on the “default” named track, to see whether dictation speech 
recognition continues to identify the “default” spelling. 
Attempt to rename the track the non-default spelling by using the suggested elaboration listed for 
that spelling of the homophone pair. 
If this fails after several attempts, and try any other elaboration words that come to mind, keeping in 
mind the elaboration phrasing with “Like” and “as In”  
If all attempts at using elaboration fail to assign the track to the non-default name, then assign the 
non-default spelling of the homophone by spelling it out. 
Now, we will add the non-default name to the loaded grammar, to determine whether what never 
worked before will now work effectively. 
Perform at least 10 trials to gather enough data for statistical significance. 
 

Intended Homoph
one 

Elaboration Notes 

Bass Base Like bass guitar Base is default, elaboration has worked 

Oracle Auricle Like a seer Oracle is default, elaboration for Auricle 
didn‟t work 

Airy Aerie Like floaty, fluffy  Not a good test case 

Aural Oral Like halo of energy Not a good test case 

Awful Offal Like awfully bad Not a good test case 

Away Aweigh Anchors aweigh Going away Sometimes aweigh appeared in elaboration, 
but not for name 

Band Banned Group / Banished “and” was most popular result 

Bass Base Like bass guitar, or first base  

Basses Basis Like bass guitars Had to spell it to get it to stick 
 

Bated Baited Like bated breath 
Like baited trap 

Name as follows: bated worked 

Beat(s) Beet(s) Like drum beats 
Like pickled beets 

“eat” was a wrong result. Beats (plural) also 
detected. 

Bell(s) Belle(s) Like silver bells 
Like southern belles 

Belle worked wonderfully once it was loaded 
into the grammar (once spelled) 

Bowed Bode Bowed strings 
Bode well 

Bode was recognized. Once spelled /loaded 
in grammar, “bowed” worked 

Cessions Sessions Territorial cessions/  
recording or therapy  

 

Chords Cords Like piano chords Cord singular, chords plural (default) 



147 

 

 

 

 

Like mic cords 

Colonel Kernel Colonel Sanders 
Popcorn kernel 

Colonels frequently 

Chanty Shanty Like a sea chantey 
shanty town 

Shanti (even though it spell check won‟t 
accept) was default. 

Choir Quire Preaching to / quire of 
paper 

Check logfile 

Chorales Corrals Bach chorale / horse yard Bach chorale couldn‟t cause correct, and 
corral was default. 

Choral Coral Choral arrangement 
Coral reef 

Check logfile 

Cymbals Symbols Crash, ride, hihat, splash, 
Chinese, Runes 

Never got cymbals to stick: try spelling it: 
worked every time. 

Forte Fort Like fortissimo or for‟tay Worked 

Four Fore, for Number four/foreground ... fore track worked (thought it‟d be “four 
track”) 

Hey Hay Hey there, hay is for horses, 
haystack, hay bales,  

Didn‟t load grammar with “Hey”.  

Halves Haves Half dollars/have-nots Similar results to others, halves by default, 
loaded haves after spelling it and it worked 
well. 

Hertz Hurts Kilohertz/ pains Hurts like pain elaboration worked for 
naming track 

Hymn Him Church hymn/his person “Him” worked a tiny bit w/o loading. Hymn 
never did until loading (had to spell it out) 

Lyre Liar Greek harp/untrustworthy Had to spell out lyre, but once added to 
grammar it worked every time.  Liar (default) 
worked from start 

Lute(s) Loot(s) Renaissance guitar/booty  

Minor Miner Youth / gold digger Minor worked somewhat without loading 
grammar 
Miner as in a forty niner worked as 
elaboration 

Pairs Pears Groups of two / fruits Peres was the mystery word it kept coming 
up with 

Paired Pared Groups of two / trimmed Check logfile 

Pause Paws Rest / dogs feet Check logfile 

Peals Peels From a bell / From an 
Apple 

Peels from an apple 



148 

 

 

 

 

Presence Presents In attendance / gifts Elaboration for “like in attendance” works, 
whereas prior it defaulted to presents. 

Rap Wrap Rap sheet, rap music/ gift 
wrap 

Wrap by default, “As in rap sheet didn‟t 
work at first, but later it did, rap music did 
work. 

Rest Wrest Pause / take away Rest worked some by default (no loading)  
Wrest worked well after loading into 
grammar 

Rhyme Rime Poetry / ancient mariner 
(frosty crust) 

Neither word worked by default: orion, ryan,   
Elaboration didn‟t work either 

Rite Right Rite of spring, ritual / Legal  Right worked by default.  Rite worked after 
loading into grammar.  No elaboration 
worked. 

Root Route Source / Road Route by default. And worked with solo and 
mute but not with pan, didn‟t load.  Loaded 
Root, and worked very well. 

Sink Sync Kitchen basin / lip sync Sync with elaboration produced saint instead   
worked well after loading grammar 

Staff Staph Musical staff / infection Staph did not get loaded into the grammar, 
even after trying twice.  Put the system to 
rest to return later. 

Stile Style Turnstile / Fashion  Style is default 

Timbre(s
) 

Timber(s) Sonority / Felled trees Timber default, timbre is pronounced 
“tamber”, and works some after spelling 
w/o loading grammar 

Tic(s) Tick(s) Tic toc, tick tick  Tick is default,  

Time Thyme Time signature, French 
thyme 

Time is default.  

Tooter(s) Tutor(s) Horn / teacher Neither were recognized, no default 

Undo Undue Menu command / 
undeserved 

 

Way Weigh As in to measure the weight Wei was an answer, a proper name 

Weakly Weekly As in feeble  

Wood Would As in wooden Good Elaboration: “as in wooden” 

Note: Highlighted text indicates the “default” spelling of the recognition result. 

Table 14  Test 7: Homophone Tests of Elaboration and Loading into Grammar.   

 



149 

 

 

 

 

Notes on annotations of the logfile data:  Failure categories are now augmented 

to include “Other Sense of the Word”, where the intention was the other 

spelling.  Without elaboration, this is unfair to assign this designation, since 

without elaboration there is no way to know the user‟s intentional spelling.  This 

failure designation is assigned only when elaboration fails and the recognized 

result is the corresponding homophone pair. 

 



150 

 

 

 

 

APPENDIX F: SUMMARY OF RULES APPLIED TO WILDCARD 

TEXT STRINGS  

Whenever dictation speech recognition is used to fill a slot with wildcard text 

converted from speech, such as in the slot for a name being assigned, a string of 

text is returned from the Windows Speech Recognition engine.  This string of 

text may have problems, for which the following rules have been useful in 

overcoming.  These rules are applied only to the string of wildcard text 

recognized to be the name being assigned to an audio track. 

The following table shows each rule, the problem it seeks to solve, and the 

effectiveness in solving that particular problem, and any side effects.   

Rule Example Problem Solved 

 “Like”, “As In”, “Is In”, 
“Is An”, “As An”. 

“Name this track Theremin 
like the Russian Inventor” or 
“Name this track „bass‟ like 
bass guitar” 

Allows names to include any of 
the words normally stricken by 
the application of the other rules 

Detect “As Follows” and 
keep all text following to 
use as the name. 

“Name this track as follows: 
„Scream like a banshee‟ ” 

Allows names to include any of 
the words normally stricken by 
the application of the other rules 

Leading “The” is 
removed from a name 
string. 

If a track is named:  Name this 
track “the piano track”, then 
Mute the “piano” track is 
recognized, not mute “The 
Piano” track.  So the name is 
not recognized with a leading 
“The”. 

“The” cannot be part of a name, 
because it is recognized as an 
optional part of the grammar. 
Such a name will never be 
recognized because “the” will 
always be assumed to be part of 
the grammar, not the name 

Trailing words: “I”, 
“Oh”, “Ah”, “And” 

“Name this track lead vocal I” The “Breath After” problem of 
appending a nonsensical word 
misrecognized from a trailing 
dysfluency, like taking a breath 

 Table 15:  List of Rules Applied to Names Strings When Assigning Them. 



151 

 

 

 

 

APPENDIX G: SYNOPSIS OF EXPERIMENTS 

Experiments exercise voice command functions and the user notes whether a 

correct response results.  Success rates and Confidence values are averaged, and 

the causes for failures are attributed. 

Experiment Purpose Results and Interpretation 

Baseline 
Performance 

Establish a Baseline of 
performance for basic 
commands 

Shows the importance of proper microphone 
setup and signal level 

Keyword 
Commands 

Establish a Baseline of 
performance for all Keyword 
commands 

Shows that the Speech Recognition Confidence 
level can be high enough 

Field Tests with 
Multiple Users 

Field testing of prototype in 
simulated recording sessions 

Shows that eventually even for speakers with 
heavy accent, it works.  Shows that Keyword 
Commands are better recognized than Name 
Commands, and Wrong Name happens a lot. 

Add Tricky Names 
to Dictionary 

Exercise known tricky names Shows that adding tricky names to the Speech 
Dictionary helps, especially for tricky names 

Successive 
Improvements: 

To demonstrate increases in 
recognition accuracy 
performance when using 
available methods. 

Shows that performance improves when adding 
a name to the dictionary, again when preventing 
confused words and again when adding names 
to the grammar. 

Additional Tests on 
20 tricky names 

To Isolate each feature and 
measure performance increase 

 

Elaboration 
Spelling it out 
Loading into 
Grammar 

Try to find a pattern in what 
works 
Measure recognition accuracy 
Without creating names 

Elaboration can help to assign names 
When names are loaded into grammar, much 
better recognition accuracy results. 

Table 16: Overview of Experiments and Results 



152 

 

 

 

 

Baseline Performance 

Purpose: 
Gain an understanding of performance in order to set 
the threshold of confidence required to take action (to 
issue a command).   
 
Interpretation: 
The four basic keyword commands: Play, Record, Stop 
and Save each uttered >25 times, and the average of the 
Confidence Score from the Speech Recognition Engine 
is plotted.  The microphone level was set to a low value 
initially (Shown in Blue), and was corrected, afterward, 
(Shown in Red).   
 
Conclusion: 
The Confidence Threshold should be set to around 
0.93. 

 

 

0.85

0.9

0.95

1

play record save stop

Confidence before/after mic setup

Before 
Correction

After 
Correction



153 

 

 

 

 

Keyword Commands 

Purpose: 
To show that command recognition is reliable: 
each keyword command was issued >25 times 
and the average Confidence value returned 
from the Speech Recognition Engine is plotted 
for each command. 
 
Interpretation: 
None of the commands averaged lower than 
the chosen threshold of 0.93, for issuing 
commands. 
 
Some commands were issued more times than 
others, and they tended to average higher 
scores.   
 
Conclusion: 
The high averages of Confidence show that 
the threshold can be set fairly high and reliable 
speech recognition commands will result. 
 
The higher scores for more utterances is most 
likely due to the Machine Learning that takes 
place, where the more a command is issued, 
the higher the confidence that it is recognized 
correctly when it is recognized. 
 

 

0.938

0.945

0.946

0.947

0.947

0.947

0.948

0.948

0.949

0.949

0.949

0.950

0.950

0.951

0.951

0.951

0.952

0.952

0.952

0.953

0.953

0.954

0.954

0.954

0.956

0.957

0.959

0.959

0.960

0.960

0.960

0.964

0.964

0.967

0.967

0.968

0.971

0.972

0.973

0.974

0.974

0.975

0.978

0.978

0.980

0.981

0.982

0.99

1

1

1

trim

select all

cut

split cut

Select start cursor

cursor select start

split delete

select center left

skip end

duplicate

track gain increment

select set extreme right

pause

delete

silence

copy

split new

next track

silence labels

disjoin

paste

split labels

cursor select end

save

stop

previous track

undo

set right selection

skip start

track pan left

select extreme left

select set extreme left

zero crossing

select center right

track gain decrement

set left selection

unsolo all tracks

select extreme right

play

disjoin labels

track menu

cursor long jump right

cursor short jump right

cursor short jump left

cursor long jump left

cursor track start

redo

track pan right

Play region

record

Unselect all

C
o

m
m

an
d



154 

 

 

 

 

Field Tests with Multiple Users 

Purpose: 
Plot cumulative successes to show 
improvement in recognition accuracy over 
time. 
 
Interpretation: 
While some sticking points were found, such 
as on certain words like “Vocal Scat”, or Alto 
Sax, the speech recognition accuracy can 
improve. 
 
Conclusion: 
Speech recognition accuracy can improve with 
use, to become reasonably reliable. 
 

 

Purpose: 
From the above test data, find the likely failure 
modes. 
 
Interpretation: 
After Low Confidence, the Wrong Name is 
the most prolific failure mode. Examination of 
the data shows the majority of low confidence 
scores as coming from a test subject who 
speaks with an accent. 
 
Conclusion: 
Attacking and improving the relatively low 
accuracy of recognizing names will make the 
system better.  

26

47
55

63

0

20

40

60

80

100

120

140

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

Perfect

A

B

C

D

E

2
7

......

0
2
4
6
8

10
12
14

Subject A

Subject B

Subject C



155 

 

 

 

 

Purpose: 
From the above test data, categorize the 
recognition accuracy rates as either Keyword 
Commands or as Name Commands. 
Interpretation: 
The recognition accuracy of Named Track 
Commands is consistently lower than for 
Keyword commands, for the 3 best 
performing test subjects. 
Conclusion: 
Improving accuracy of Named Track 
Commands will result in a better performing 
system. 

 

Add Tricky Names to Dictionary 

Purpose: 
Test the effect on recognition accuracy of 
Adding Tricky Names to the Speech 
Dictionary.   
 
Add to Speech Dictionary, Prevent 
Recognition of Confused Words, Add to 
Loaded Grammar 
 
Interpretation: 
Issuing track commands on Wow, Gambales 
and Crotales (words not in the Speech 
Dictionary) show no successes until after 
adding these words to the Speech Dictionary.  
Then, there were significantly higher success 
rates for each of them. 
 
Conclusion: 
If a word is not in the Speech Dictionary, then 
it will not work at all.  If it gets added, then 
improvement ranges from working much 
better to working flawlessly. 

 

 

70%

65%

63%

76%

86%

86%

0% 50% 100%

Subject A

Subject B

Subject C

Keyword 
Command

Named Track 
Cmd

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Perfect

Wow

While

Gambales

Crotales

Zero Values at start are before 
adding word to Speech Dictionary



156 

 

 

 

 

Successive Improvements: 

Purpose: 
Determine the relative influence of preventing 
recognition of confused names, adding names 
to the Speech Dictionary, and loading them 
into the Grammar, on recognition accuracy. 
Interpretation: 
Why was the initial success rate non-zero if the 
word was not in the Dictionary?  It was in the 
Dictionary, but adding it provides a chance to 
pronounce it.  This act is what causes the jump 
in improvement after adding “Theremin to the 
Dictionary. 
Conclusion: 
These techniques help speech recognition 
accuracy. 
 

 

Load Theremin into Grammar 

Purpose:   
Isolate the improvement in recognition that is due 
to loading names into the grammar.  Also 
determine whether adding the word to the Speech 
Dictionary helps. 
 
Interpretation: 
For every word tested, adding the word to loaded 
grammar improved recognition accuracy. 
 
Conclusion: 
Loading “Theremin” into the grammar provides 
measurable improvement in recognition accuracy. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial 
success rate

Prevent 
"Sarandon"

Add 
"Theremin" 
to Speech 
Dictionary

Add 
"Theremin" 
to loaded 
grammar

93.8%

96.7%

92.5%

96.7%

90%

91%

92%

93%

94%

95%

96%

97%

98%

before after

First 
Iteration

Second 
Iteration



157 

 

 

 

 

Add Tricky Names to Dictionary, then Load 
them into Grammar 

Purpose:   
Expand beyond “Theremin” to include the 
many naming words that exhibited recognition 
problems.  Goal is to determine whether or 
not they can reliable. 
Interpretation: 
The chart showing cumulative successes is 
somewhat difficult to read, but shows a perfect 
string of successes as a steeply inclined smooth 
line.  The key events of adding words to the 
dictionary and loading them into the grammar 
are indicated in a more detailed view of the 
graph, to illustrate the effect of these two 
improvements. 
Conclusion: 
Loading names as choices into the grammar, 
so that dictation speech recognition is not 
required, does provide a measurable 
improvement in recognition accuracy, even for 
the trickiest words.   Adding words into the 
Speech Dictionary also provides measurable 
improvement in recognition accuracy 

 

1 4 7 10 13 16 19 22 25 28 31 34 37

Alto Sax

bass

cowbell

crotales

djembe

kazoo

raisins

theremin

violins

vocal scat

wow

sticklavier

tapping



158 

 

 

 

 

Elaboration using Homophones 

Purpose:   
Use Homophones to show whether 
Elaboration works to recognize a more 
obscure spelling of a homophone word.  For 
example, recognizing “Lyre” over “Liar”. 
 
The set of homophones as input was drawn 
from a list of about 2000 homophones, filtered 
down to those which may have some 
connotation with recording. 
 
Interpretation: 
Elaboration does not often work to assign a 
name to a track.  Some interesting specifics 
were learned, about the tendency to favor 
proper names over ordinary words, such as 
“Wei” over “way”.  The few times where it 
clearly worked were 
 
Conclusion: 
Elaboration requires further refinement in 
order to be more useful.  The user must think 
differently in order to use it more effectively, 
by coming up with extra words that are 
frequently heard together with the desired 
word, rather than simply redefining the word. 
 

 

0% 20% 40% 60% 80% 100%

hurts

wood

Presence

cord

Bass

rap

Beet

Wrap

weekly

four

auricle

tick

hymn

bated

elaboration success



159 

 

 

 

 

Homophones to Show Effectiveness of Loading 
Names into Grammar 

 
Purpose:   
Use Homophones to show whether Elaboration 
works to recognize a more obscure spelling of a 
homophone word.  For example, recognizing 
“Lyre” over “Liar”. 
 
Since homophones can be recognized multiple 
ways, and the non-default way is loaded, it is the  
 
The set of homophones as input was drawn from a 
list of about 2000 homophones, filtered down to 
those which may have some connotation with 
recording. 
 
 
Interpretation: 
While Elaboration does not often work to assign a 
name to a track, spelling it out almost always 
works. And, loading the name with the obscure 
spelling into the grammar allows even the more 
obscure spelling of the homophone pair to be 
accurately recognized. 
 
The poor results for “Fore” may have been 
attributed to 2 other homophones, For and Four.  
The latter word being a number, is already part of 
the grammar for numbered tracks, which explains 
several mis-recognition events favoring “Four” (or 
fourth). 
 
Conclusion: 
Loading words which are part of homophone pairs 
into the grammar provides a high level of 
recognition accuracy for most homophones tested.  
The experiment focused on loading the more 
obscure name into the grammar, to ensure it would 
be recognized over the more prominent (default) 
spelling of the word. 

 

60% 70% 80% 90% 100%

Banned

basses

bated

beet

belle

Bowed

bowed

cymbals 

fore

haves

hay

hurts

hymn

loot

lyre

miner

pairs

pared

rap

rite

root

stile

sync

Thyme

timbre

tutor

undue

weekly

weigh

wood

wrest



160 

 

 

 

 

APPENDIX H: BIBLIOGRAPHY 

"The market for speech applications in mobile computing expected to triple by 
2014", 2009, Database and Network Journal, vol. 39, no. 3, pp. 19. 
 
Annotations:  Mobile Handset applications increase from $32.7 million to $99.7 
million.   Navigation (GPS) devices.  Network based ASR (where speech is 
processed remotely from the raw PCM audio) versus embedded ASR (where 
speech dictionary and algorithm processing power and memory are limited to the 
mobile device).  Applications for inventory control are described.   
 
 
Ananthakrishnan, S. & Narayanan, S.S. 2008, "Automatic prosodic event 
detection using acoustic, lexical, and syntactic evidence", IEEE Transactions on 
Audio, Speech and Language Processing, vol. 16, no. 1, pp. 216-228. 
 
Annotations: Detection of speech events among non-speech events is critical for 
reducing false positive events.  The application of this research may help to 
address the “timeout error” problem.  If the more effective distinction between 
speech and non-speech sounds works, this may allow an increase in the timeout 
parameter so that a speaker can pause longer when in the middle of a recognition 
phrase. 
 
 
Ayres, T. & Nolan, B. 2006, "Voice activated command and control with speech 
recognition over WiFi", Science of Computer Programming, vol. 59, no. 1-2, pp. 
109-126. 
 
Annotations: Uses SPHINX II.    
 
 

Baker, J., Deng, L., Glass, J., Khudanpur, S., Chin-hui Lee, Morgan, N. & 

O'Shaughnessy, D. May 2009, "Developments and directions in speech 

recognition and understanding, Part 1", IEEE Signal Processing Magazine, 

vol. 26, no. 3, pp. 75-80. 



161 

 

 

 

 

Baker, J., Deng, L., Glass, J., Khudanpur, S., Chin-hui Lee, Morgan, N. & 

O'Shaughnessy, D. July 2009, "Updated MINDS Report on Speech 

Recognition and Understanding, Part 2", IEEE Signal Processing Magazine, 

vol. 26, no. 4, pp. 78-85. 

Annotations: Describes areas of progress and challenges in Automatic Speech 
Recognition (ASR) in its many form factors: Dictation, command & control, 
dialogue systems, and conversational systems. 
 
 
Caskey, S. 2009, "Spoken language input for a patient note system", 
HEALTHINF 2009.Second International Conference on Health Informatics, pp. 
323. 
 
Chang, J. 2009, "Usability evaluation of a Volkswagen Group in-vehicle speech 
system", Proceedings of the 1st International Conference on Automotive User 
Interfaces and Interactive Vehicular Applications, Automotive UI 2009, pp. 137. 
 
Annotations:  Test methodology and results are well described. 
 
 
Chun-Liang Hsu 2009, "Constructing intelligent living-space controlling system 
with blue-tooth and speech-recognition microprocessor", Expert Systems with 
Applications, vol. 36, no. 5, pp. 9308-18. 
 
 
Chun-Liang, H. 2008, "Implementing speech-recognition microprocessor into 
intelligent control-system of home-appliance", 2008 IEEE Asia-Pacific Services 
Computing Conference (APSCC 2008), p. 881. 
 
Annotations: Discusses modes of operation for controlling multiple home 
electronic devices, such as the telephone, internet or appliances.  Speech 
Recognition comes on an ASIC, and is implemented into a hardware system. 
 
 
Cohen, J. 2008, "Embedded speech recognition applications in mobile phones: 
Status, trends, and challenges", 2008 IEEE International Conference on 
Acoustics, Speech and Signal Processing, ICASSP, March 31,2008 - April 



162 

 

 

 

 

04Institute of Electrical and Electronics Engineers Inc, Las Vegas, NV, United 
states, pp. 5352. 
 
Annotations:  Mobile Phone history, Word Spotting Speech Recognition, 
recommends that a “killer application” be developed to promulgate the 
technology. 
 
 
Cook, Brad; 4 February 2004, MacSpeech releases iLife ‟04 Voice Solution for 
iListen; MacCentral:  accessed 3 May 2011 
http://www.macworld.com/article/29423/2004/02/macspeech.html 
 
Annotations: A ScriptPak provides keyword command recognition for menu 
commands.  Each are application specific.  One was released for GarageBand, the 
music recording application.   
 
 
De Mori, R. 2008, "Spoken language understanding", IEEE Signal Processing 
Magazine, vol. 25, no. 3, pp. 50-8. 
 
Annotations:  Good overview of Natural Language Understanding (NLU) 
technologies.  Concept Error Rate (CER) metric and Concept Level Confidence 
metrics.  “The syntax of a language is seen as algebra and grammatical categories 
are seen as functions" 
 
 

Degen, Leo. "Working with audio: integrating personal tape recorders and 

desktop computers." ACM Conference on Human Factors in Computing 

Systems - CHI '92 (1992):413-418. 

Annotations: Uses buttons to mark audio start and end of interesting 

segments.   

 
Ernst, R. 2001, "Combining speech recognition software with digital imaging and 
communications in medicine (DICOM) workstation software on a microsoft 
windows platform", Journal of Digital Imaging, vol. 14, no. 2, pp. 182. 
 

http://www.macworld.com/article/29423/2004/02/macspeech.html


163 

 

 

 

 

Annotations:  Radiology application, using Power Scribe (post-cursor of the 
Voice Navigator).  Results showed near 100% dictation speech recognition 
accuracy.   Most common mistake was “or” instead of “for”, in a complex 
domain-specific sentence.  Also used as a reference in the Technical Report. 
 
 

Feng, J. 2004, "Using confidence scores to improve hands-free speech based 

navigation in continuous dictation systems", ACM transactions on computer-

human interaction, vol. 11, no. 4, pp. 329. 

Annotations: Confidence scores range from +30 down to -15.  Navigation 

and selecting incorrect words for correction is a primary focus.   

 

Gorniak, P. 2003, "Augmenting user interfaces with adaptive speech 

commands", ICMI'03: Fifth International Conference on Multimodal 

Interfaces, pp. 176.  

Annotations: Teach the computer what each tool is called by clicking on it, 

and saying the name. Future work on “SayPlay” could allow users to define 

synonyms for commands by using a Meta command such as: “Computer, 

redefine the command X to {instead or also} be spoken as Y, {instead or 

also}”.  Where X is an existing command (single word or phrase, such as 

“Skip to Start”, and Y is the new command phrase, such as “Jump to the 

beginning”.  This helps users recall the precise phrases for each command. 

The challenge implementing it is to use X to get the Semantic Result for that 

command (perhaps in a table lookup), and to assign the semantic result of Y, 

so both phrases result in the same command. 

Gruenstein, A. 2008, "The WAMI toolkit for developing, deploying, and 
evaluating Web-Accessible multimodal interfaces", ICMI'08: Proceedings of the 
10th International Conference on Multimodal Interfaces, pp. 141. 
 
Annotations: Detailed description of software architectural structures useful in 
providing hands-free software user interfaces.  Most commands are combinations 



164 

 

 

 

 

of gestures and spoken commands, such as drawing lines or pointing to objects, 
naming them and performing some action upon them. 
 

Hanna, P., O'Neill, I., Wootton, C. & McTear, M. 2007, "Promoting 

extension and reuse in a spoken dialog manager: An evaluation of the 

queen's communicator", ACM Transactions on Speech and Language 

Processing, vol. 4, no. 3.  

Annotations: Good coverage of object oriented design principles as applied to a 
spoken dialog manager.  Some notable advantages are a design that can be 
extended to handle unforeseen situations such as: all inquiry agents inherit a 
common core of discourse management behavior, thereby ensuring all agents 
employ a similar discourse style. A domain spotter object is used to manage 
interactions between the user and agents. Finally, a shared discourse history is 
used to provide an evolving account of the dialog.  Page 10. 
 
 
Hartman, M.T. 1998, "Talking to your television", Proceedings of 42nd Annual 
Meeting of the Human Factors and Ergonomics Society, p. 532. 
 
Annotations: Experiments with user behaviors and satisfaction using a voice 
command controlled television remote device.  The device itself was a mockup, 
made to appear to be a truly functional device, with a “Man Behind the Curtain” 
performing the actual recognition.  The goal was to simulate a real device in order 
to measure levels of dissatisfaction caused by recognition errors, which were 
introduced based on a random function.  The results were universally in favor of 
having such a device. 
 

Hubbell, T.J., Langan, D.D. & Hain, T.F. 2006, "A voice-activated syntax-

directed editor for manually disabled programmers", Eighth International 

ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 

2006, October 23,2006 - October 25 Association for Computing Machinery, 

Portland, OR, United states, pp. 205.  

Annotations: The way to Name things is using a recording paradigm to start, 

record the name, and stop when finished.  The user can correct mistakes 



165 

 

 

 

 

using “back” and restating these parts.  Test methodology used 5-point Likert 

test questionnaire of several programmers. 

Quotation:  “The Name control allows users to create new identifier names 

for projects, classes, methods, fields, and variables, and is one of the few 

places that employs the dictation grammar of the recognizer.”  P. 208 

 
Iwahashi, N. "Interactive learning of spoken words and their meanings through 
an audio-visual interface." IEICE Transactions on Information and Systems 91.2 
(2008):312-21. 

Annotations: Teaching words interactively based on computer system 

queries, such as asking the user “what is this word?” whenever a new word is 

encountered.  The user provides visual and keyboard feedback. 

Jiang, H. 2005, "Confidence measures for speech recognition: A survey", 

Speech Communication, vol. 45, no. 4, pp. 455.  

Annotations: Confidence Measure (CM) as used in practical applications 

(whether or not to issue a command based on a recognized utterance).   Also, 

CM versus Utterance Verification (UV), meaning whether a sound is in fact 

a spoken utterance. 

 

Ke uml puska, V.Z. 2009, "A novel Wake-Up-Word speech recognition 

system, Wake-Up-Word recognition task, technology and evaluation", 

Nonlinear analysis, vol. 71, no. 12, pp. 2772.  

Annotations: Wake-up-words are distinguished from keyword spotting by 
distinguishing between words spoken to the computer, and words spoken to 
others about the computer.  This is done without natural language understanding 
models.   

Keefer, R. 2010, "Voice commands for a mobile reading device for the 

visually impaired", ACM International Conference Proceeding Series 



166 

 

 

 

 

Annotations: Detailed descriptions of grammars for providing flexible command 
phrases.  Selecting sections of newsprint for playback is conceptually similar to 
selecting sections of audio to playback. 
 

Klarlund, N. (2003) “Editing by voice and the role of sequential symbol 

systems for improved human-to-computer information rates” Proceedings of 

International Conference on Acoustics, Speech and Signal Processing 

ICASSP ’03 pp. 728-31 

Annotations: Describes ShortTalk, a useful language designed for human 
computer interaction by voice.   

 “Two principles for realizing this goal for dictation systems: 
srenophonic concept naming-fundamental concepts are treated as 
symbols that receive short pronunciations- and unambiguous 
orthogonaliry-the command grammar must allow concepts to be 
sequenced combinatorially with few restrictions while preserving 
distinctness of commands from fragments of natural language.” 
p.V-728. 

The idea of concept naming is similar to the entity naming of tracks for 

purposes of issuing commands on them. 

 

Kou, X.Y. 2010, "Knowledge-guided inference for voice-enabled CAD", 

Computer aided design, vol. 42, no. 6, pp. 545.  

Annotations: Utilizes Hypernyms and Hyponyms, words that are more or less 
general than a given word.   
 
 
Kim, Ji-Hwan 2010 “Transformation-based named entity extraction from spoken 
content for personal memory aid”  (Dept. of Computer Science and Engineering, 
Sogang University, Seoul, Korea, Republic of) Source: IEEE Transactions on 
Consumer Electronics, v 56, n 4, p 2606-2614, November 2010 
 
Annotations: Named entities (NE) are generally proper nouns.  Spoken dialog 
does not have the advantage of using Capitalization, as in text.  This paper 



167 

 

 

 

 

compares its rule-based NE extraction with the best-performing commercially 
available stochastic NE system.  2 steps: preprocessing, automatic rule generation 
Quote from page 2607:  

“Speech disfluencies such as filled pauses and repetitions are 
prevalent in spontaneous speech. Unlike the corruption of input, 
these kinds of error do not come from speech recogniser errors 
but from the disfluencies themselves. In these cases of disfluency, 
any missing elements or extra intervening tokens can cause 
mismatches between trained patterns and input speech. Speech 
disfluencies are classified as Filled pauses (e.g. Cambridge uh * 
university), Repetitions (e.g. Johnson * Johnson was here), Repairs 
(e.g. Johnson * Jackson liked it)”.   

 
Koo, M., Choi, J. & Kim, Y. 2008, "The development of automatic speech 
recognition software for portable devices", 1st International Conference on 
Advances in Computer-Human Interaction, ACHI 2008, Feb. 10-15, 2008 IEEE 
Computer Society, Saint Luce, Martinique, pp. 59. 
 
Annotations: Concerned with Utterance Verification (UV), in hand-held devices 
for medium to close mic.  Compare 2 popular smart phones with voice 
commands HP and Samsung.   
 

Langer, S.,  2002  “Impact of Speech Recognition on Radiologist 

Productivity” Journal of Digital Imaging, Vol 15, No 4, pp 203-209 

Annotations: Speech Recognition reduced the time required to produce a 

report and increased the number of reports per day for radiologists. 

Lemon, O., Gruenstein, A., 2004. "Multithreaded context for robust 

conversational interfaces: Context-sensitive speech recognition and 

interpretation of corrective fragments." ACM transactions on computer-

human interaction 11.3 pp.241-267. 

Annotations: Conversations are by nature multi-threaded, meaning that several 

lines of thought can be going on simultaneously.  Context sensitivity limits 

the possible referents to within a context. Corrective Fragments refer to the 

user making a correction to the current actions by issuing a revised 

command. 



168 

 

 

 

 

Lee, K.-F. 1988 “Large-vocabulary speaker-independent continuous speech 
recognition- The SPHINX system” PhD. Thesis, Carnegie-Mellon University 
 
Annotations: Highly referenced source for successful Dictation speech recognition 
systems.  The strategy was to attack both Large Vocabulary and Continuous 
(rather than keyword) speech recognition for dictation recognition systems.  
Speaker independence was also addressed, but with less success without some 
training, than given some amount of training. 
 
 
Lepinski, G.J. & Vertegaal, R. 2008, "Using eye contact and contextual speech 
recognition for hands-free surgical charting", 2nd International Conference on 
Pervasive Computing Technologies for Healthcare 2008, Pervasive Health, 
January 30,2008 - Febrary 01 IEEE Computer Society, Tampere, Finland, pp. 
119. 
 
Annotations: Gaze Recognition is used to trigger a gate which allows Voice 
Commands to be understood as actual commands, and not regular speech.  
Results show a drastic improvement over using Speech Recognition without the 
gaze detection to govern which speech is to be recognized as a command.  Also 
see the reference:  L. Rossi, D. Sacerdoti, B. Billi, G. Lesnoni, M. Orciuolo, T. Rossi, D. 

Sacerdoti, and L. Bertollini, “Automatic speech recognition in vitreoretinal surgery. A 

project for a prototypal computer-based voice controlled vitrectomy machine,” European 

journal of ophthalmology vol. 6, no. 4, pp. 454-459, 1996. 

 
Robotics: Note there are several other Voice Command Robotics examples: 
Voice controlled teleoperated Robot, Voice Command for Robot Guidance, 
HTK for Voice controlled robotic system based on Hidden Markov Model, 
Development of a Cognitive Model of Humans in a Multi-Agent Framework for 
Human-Robot Interaction 
 
 
Lopez-Cozar, R. 2006, "Testing the performance of spoken dialogue systems by 
means of an artificially simulated user", The Artificial Intelligence Review, vol. 26, 
no. 4, pp. 291-323. 
 
Annotations: Discusses the implementation of a simulated user for analysis of all 
of the various paths through a menu driven dialog system.  Simulated users do 
not get frustrated or tired, and the variance of an experiment can be narrowed.  
Also, a great many more sequences can be tested. 



169 

 

 

 

 

McCauley, Lee & D‟Mello, Sidney & Daily, Steve 2005 “Understanding without 
Formality: Augmenting Speech Recognition to Understand Informal Verbal 
Commands”, 43rd ACM Southeast Conference March 18-20, 2005 –Kennesaw, Georgia 
USA, pp. 1.42–7 
 
Annotations: Uses Dictation Speech Recognition to generate a listing which is 
analyzed offline by a process called Latent Semantic Analysis (LSA).  
Simultaneous to this, the command grammar based (key-phrase) speech 
recognition is used to interact with the speaker.   Grammars are updated when 
the LSA returns a new phrase for an equivalent command. 
 
 
Nakano, Teppei 2008 “Flexible Shortcuts: Designing a New Speech User 
Interface for Command Execution”, CHI 2008 Proceedings, April 4-8, 2008 – 
Florence Italy, pp. 2621-2624.  
 
Annotations: Continuous Keyword Input allows the user to be more flexible in 
each spoken command.  Results co mpare well against traditional Command and 
Control (C&C).  Experiment compares control of Windows Media Player and 
Voice Chat (Skype), and is measured using subjective assessment.  

Nolan, B 2002, "The JAM Suite: A Voice-Enabled Network-Based Virtual 

Band Application”. Principles and Practice of Programming in JAVA. 

Annotations: There are no measurements and conclusions to lead one to 

believe this system was actually implemented.  Disparate areas of Pitch 

Detection, multipoint network streaming, and speech recognition for voice 

commands are described, but no results are discussed.  It seems like a nice 

idea but is entirely impractical due to latency problems, as discussed. 

Motorola MOTOROKR E8: Voice Command Instructions, http://support.t-
mobile.com/doc/tm52272.xml?related=y&Referring Related DocID List 
Index=3&navtypeid=6&pagetypeid=7&prevPageIndex=1 

Annotations:Names (first and last) of contacts are stored, to call back by 

voice commands.   

Dial number, Send message to <contact’s name>, Check calendar, Check 

new message, Check new e-mail, Add new contact, Talking phone, Check 

http://support.t-mobile.com/doc/tm52272.xml?related=y&Referring%20Related%20DocID%20List%20Index=3&navtypeid=6&pagetypeid=7&prevPageIndex=1
http://support.t-mobile.com/doc/tm52272.xml?related=y&Referring%20Related%20DocID%20List%20Index=3&navtypeid=6&pagetypeid=7&prevPageIndex=1
http://support.t-mobile.com/doc/tm52272.xml?related=y&Referring%20Related%20DocID%20List%20Index=3&navtypeid=6&pagetypeid=7&prevPageIndex=1


170 

 

 

 

 

battery, Check signal, Check time, Check date, Open setup, Open recent 

calls, Open theme, Open camera, Open Web access, Set normal, Set vibrate, 

Set silent, Set ring, Set airplane, Set airplane off 

 
Obuchi, Y. 2010, "Intentional voice command detection for trigger-free speech 
interface", IEICE Transactions on Information and Systems, vol. 93, no. 9, pp. 
2440. 
 
Annotations: Voice Activity Detection, can be key to minimizing dysfluency 
misrecognitions. 
 
 
Rebman, C M. "Speech recognition in the human-computer interface." 
Information & management 40.6 (2003):509-19. 
 
Annotations: Provides an overview of different classes of SR, including speaker 
dependent versus speaker independent, continuous versus discrete.  Performance 
measurements are primarily concerned with dictation speech recognition accuracy 
and rates for time-savings. It also provides a good model of presenting results.   

Ross S., Brownholtz E., Armes, R.,  2004 “Voice User Interface Principles 

for a Conversational Agent”  IUI’04, Jan. 13–16, 2004, Madeira, Funchal, 

Portugal.  ACM  

Annotations: These ideas serve as organizing principles for conversational 

systems, such as HAL, or the computer on Star Trek.  These require specific 

behaviors for interruption, acknowledgement, and other cases of interaction.  

The one-to-one nature of request and response has been improved upon in 

Lemon and Gruenstein, 2004. 

  

Rudnicky, Alexander I. 1989 “The Design of Voice-Driven Interfaces”, 

Human Language Technology Conference archive.  Proceedings of the 

workshop on Speech and Natural Language.  Association for Computational 

Linguistics  Morristown, NJ, USA 120 - 124    



171 

 

 

 

 

Annotations: Design the Language of the Command Set based on observations 
of users performing tasks by voice in unconstrained situations.  Design facilities 
to “promote fluent interaction, error repair, and capability to introduce new (task-
specific) words”. Voice controlled Spreadsheet application.  
 
 
Russell, Norvig, Peter; “Artificial Intelligence: A Modern Approach” 
 
Annotations: Textbook used to teach Artificial Intelligence at graduate or 
undergraduate level.  Describes agent based systems in detail. 
 
 
 
Saruwatari, H. 2009, "Hands-free speech recognition challenge for real-world 
speech dialogue systems", ICASSP 2009 - 2009 IEEE International Conference 
on Acoustics, Speech and Signal Processing, pp. 3729-32. 
 
Annotations:  Real-world acoustical issues, such as ambient noise and 
reverberation, are addressed using a microphone array.  A noise estimation 
experiment is performed, using the Blind Spatial Subtraction Array (BSSA) and 
results show improvements over other microphone techniques.  
 
 
Schmandt, Christopher & Hulteen, Eric A., “The intelligent voice-interactive 
interface”, Proceedings of the 1982 conference on Human factors in computing 
systems, p.363-366, March 15-17, 1982, Gaithersburg, Maryland, United States 
 
Annotations: The gesture and voice user interface developed and described here 
is succinctly called  “Put that there”.   A simple user interface to build and modify 
a database is described wherein gestures and spoken commands are combined to 
control the interaction with the database.  Ambiguities are resolved by synthetic 
spoken questions for clarification (such as asking “Which one?”)   
 
 
Schmandt, Chris, Ackerman, Mark S., Hindus, Debby. 1990, "Augmenting a 
Window System with Speech Input", IEEE Computer Magazine, pp. 50-56. 
  
Annotations: Uses XSpeak II as voice recognition technology to allow users to 
switch between windows in a graphical user interface.  p176.  

In this paper, we propose an adaptive speech input augmentation 



172 

 

 

 

 

to any standard graphical user interface. With this speech layer 
added to the interface, the user may continue to use the system as 
before, controlled solely with keyboard and mouse. However, he 
or she can also use speech to name interface actions such as button 
clicks. A phoneme recognizer produces a phonetic representation 
of the utterance, which is associated with the interface action that 
occurs closest in time. After a few consistent examples, the user 
can speak the name he or she chooses for the action instead of 
using the mouse or keyboard.  

 
 
Schuricht, M. 2009, "Managing multiple speech-enabled applications in a mobile 
handheld device", International Journal of Pervasive Computing and 
Communications, vol. 5, no. 3, pp. 332. 
 
Annotations: Prototype uses DynaSpeak from SRI, running under Windows XP.  
DynaSpeak includes noise cancellation, endpoint control, dynamic grammar 
update, and easy API.  Program Manager controls the flow of information 
between applications, based on voice command queries.  

“there are several individuals that have the same first name, or names that are 
similar in pronunciation. Thus, the program must differentiate first name requests 
by asking the user for more information about the person to whom they are 
referring. 
 
 
Sepe Jr., R.B. & Pace, J.F. 1999, "Voice actuation with context learning for 
intelligent machine control", Proceedings of the 1999 IEEE Industry Applications 
Conference - 34th IAS Annual Meeting, October 03,1999 - October 07IEEE, Phoenix, 
AZ, USA, pp. 295.  
Annotations: Predicting the next likely action based on previous patterns of 
activity, recommends the next action when user seems stuck, and requests 
confirmation whenever an unlikely sequence of commands are used.  A discrete 
Markov model is used to develop a statistical model of usage, which then drives 
the likelihood feedback provided for new users to learn the process, and 
experienced users avoid errors in process control. 
 
Sirota, Milton, 1965, “Minimum Sample Sizes For Superiority Comparisons of 
Prior Tested Items”, Industrial Quality Control, June 1965, pp. 603-605. 
 



173 

 

 

 

 

Annotations: Probabilistic and statistical model for calculating the length of a 
string of successful tests necessary to consider an improvement to be statistically 
significant, given test results from prior to making the modification which is 
being considered as a possible improvement.  The equation from this paper was 
implemented into a spreadsheet, allowing any number of past measured 
success/total ratios to be used in determining the sample size necessary to 
produce a 95% confidence measure in test results taken after making a 
modification. 
 

Stifelman, L.J., Arons, B., Schmandt, C. and Hulteen, E.A. “VoiceNotes: A 

speech interface for a hand-held voice notetaker”. In Proceedings. CHI93 

(1993),  pp.179-186 

Annotations: Capturing and retrieving spontaneous ideas, recorded as spoken 

voice.   Main techniques are snap to start, and varispeed playback. 

 
Suendermann, D.,  Liscombe, J.,  Dayanidhi, K., Pieraccini, R., 2009, “A 
Handsome Set of Metrics to Measure Utterance Classification Performance in 
Spoken Dialog Systems” Proceedings of SIGDIAL 2009: the 10th Annual 
Meeting of the Special Interest Group in Discourse and Dialogue, pages 349–356 
 
Annotations: Caller experience measurement methods.  Compare “True Total” 
versus Caller Experience as basis for accurate measurement.   
 
 
Troutman, John F., Miller, Joy A.; “Homophones List” 
http://fivejs.wordpress.com, accessed 5/5/11. 
 
Annotations: This list of 2000 Homophone pairs was filtered down to a set of 50 
homophone pairs that could have anything to do with music recording, such as 
Lyre/Liar.  These were used as input for an experiment to measure the 
effectiveness of Elaboration in tipping the balance of recognition toward one 
spelling or the other. 
 
Yavelow, Peter 1989, “Voice Navigation for the Macintosh Musician”. Articulate 
Systems marketing literature  
 

http://fivejs.wordpress.com/


174 

 

 

 

 

Annotations: Voice commands to aid in music production, calling up patches by 
name, as well as remote control.   
 
Yegulalp, Serdar 2011; “Speech recognition: Your smartphone gets smarter” 
http://www.computerworld.com/s/article/9213925/Speech_recognition_Your_
smartphone_gets_smarter?taxonomyId=15&pageNumber=1 

Annotations: Good description of Statistical Language Model used in speech 
recognition. 
 
 
Zhou, H., Sadka, A. & Jiang, R.M. 2008, "Feature extraction for speech and 
music discrimination", 2008 International Workshop on Content-based 
Multimedia Indexing - CBMI 2008 IEEE, Piscataway, NJ, USA, pp. 170. 
 
Annotations:  Tutorial on differentiating speech signals from music signals, at the 
spectrographic level.  If this technology could differentiate singing from speaking, 
then “Stop in the name of love”, might not halt recording.  A simpler way is to 
require the user to say “Stop Recording” when in record. 

http://www.computerworld.com/s/article/9213925/Speech_recognition_Your_smartphone_gets_smarter?taxonomyId=15&pageNumber=1
http://www.computerworld.com/s/article/9213925/Speech_recognition_Your_smartphone_gets_smarter?taxonomyId=15&pageNumber=1


175 

 

 

 

 

APPENDIX I: GLOSSARY 

Dictation Speech Recognition: Unconstrained, free-running language capture 
and render as text.  The other kind of speech recognition is “Key word spotting” 
recognition, where specific phrases are codified and recognition events are 
triggered upon the detection of the utterance of these phrases.  Dictation speech 
recognition is also called Continuous Speech Recognition. 

Disfluency: An utterance which is not a word, nor is intended to be recognized 
as a word, such as clearing one‟s throat, licking one‟s lips, stammering, or other 
accidental sound.  These are generally associated with an accidental or erroneous 
recognition event. 

Homophone: A word associated with another word that sounds the same when 
spoken, but has different meaning and spelling. 

Homograph: A word associated with another word that is spelled the same way, 
but is pronounced differently, and has different meaning.  

Keyword Speech Recognition: Recognition of words and phrases that are 
predefined and programmed into a grammar structure which is loaded into the 
speech recognition engine. 

Overdub: Adding a new recorded track alongside existing recorded tracks in a 
multi-track recording session.  Historically, the number of tracks in a recording 
was limited to the tape recorder.  The number of tracks available increased from 
4 tracks in the mid 1960‟s to 8 tracks in the late 1960‟s to 16, 24 and 32 tracks 
into the 1980‟s, with commensurate increases in system cost.  With digital audio 
recording software, the number of tracks is limited by the disk access speed and 
disk throughput.  For an average laptop computer with a single disk drive in 
2011, the number of tracks that can possibly be played back at one time, while 
recording a new track is about 32 tracks. 

Recognition Event: An event initiated by the Speech Recognition Engine as a 
result of the recognition of an utterance into the microphone by the user. 



176 

 

 

 

 

Session: A “Session” is a meeting for collaboration in the task of recording a 
series of musical pieces.  It generally takes place in a recording studio or concert 
hall where acoustics are appropriate to good sound reproduction. 

Slot: A “Slot” is a place within a grammatical structure where a set or selection of 
words may occur, such as the names for ingredients to include on a pizza in the 
example: “I would like to order a large pizza with pepperoni, mushrooms and 
sausage.”  The word “Large Pizza” fills a slot for what is being ordered, and 
pepperoni, mushrooms and sausage” fill slots for extra ingredients.   In “SayPlay” 
the primary slot is for the track name in the track assignment commands: “Name 
this track X”, and “Name the recorded track X”  where X represents the slot for 
the name. 

Take: A “Take” is an audio recording of a run-through of the audio events being 
performed.  For example when an ensemble performs a piece that is being 
recorded, the “take” consists of all recorded events from the start of recording 
until recording is halted.   A take can be aborted and thus becomes an aborted 
take. 

Track: A Track is a continuous linear recording of an audio signal. A track is a 
single channel, from a microphone into an input and then into a file stored on the 
computer hard disk drive.  It can be multiple channels, as when supplying several 
microphones to each individual drum and cymbal in a drum set.  In this case the 
collection of tracks comprising the drums can be referred to as the drum tracks, 
but more commonly each channel will still be referred to by the drum, such as 
the snare drum track, or the kick drum track. 

Multi-track recordings involve discrete channels for signals from microphone to 
record media, such that they can be played back in isolation from the recordings 
of the other instruments in the ensemble 

 
  



177 

 

 

 

 

VITA 

NAME OF AUTHOR: John Martin Goddard 

PLACE OF BIRTH: Denver, Colorado, USA 

DATE OF BIRTH: November 12, 1965 

UNDERGRADUATE SCHOOL ATTENDED:  
 University of Colorado at Boulder 
 
DEGREES AWARDED: Bachelor of Science in Electrical and Computer Engineering, 

Bachelor of Arts in Music, 1989, University of Colorado at Boulder   
 

PROFESSIONAL EXPERIENCE: 

Digital Audio Programmer, Sonic Solutions, San Francisco CA 1990-1992 
 
Software Engineer, Digidesign, Palo Alto CA, 1993-1996 
 
Licensing Standards and Test Development Engineer, Dolby Laboratories 

Licensing Corporation, San Francisco CA, 1997-2003 
 
Senior Sales Engineer, Wohler Technologies, Hayward CA, 2004-2006 
 
Senior Applications Engineer, Telairity Inc., Santa Clara CA 2006-2007 
 

HONORS AND AWARDS: 
 Nomination for Daytime Emmy Award, Best Sound Editing, Disney‟s 

Alladin 1995 
 
 


